Neelle Valves

Low Pressure

10V & SW Series

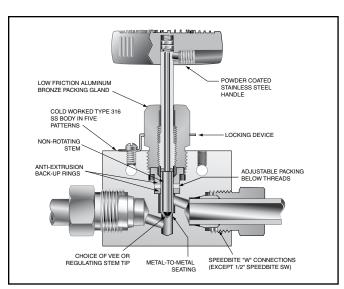
Pressures to 15,000 psi (1034 bar)

Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave a reputation for reliable efficient product performance. Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, research, and oil and gas industries.

Low Pressure Valve Features:

- 10V Series valve design provides in-line tube connections for 1/4" to 1/2" tube sizes.
- SW Series valve design provides increased flow capabilities.
- Tubing sizes from 1/8" to 1/2".
- Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- Metal-to-metal seating achieves bubble-tight shutoff, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- · Choice of Vee or Regulating stem tips.
- Available in five body patterns.

Parker Autoclave Engineers valves are complemented by a complete line of low pressure fittings, tubing, check valves and line filters. The 10V and SW series use Parker Autoclave Engineers' SpeedBite connection. This single-ferrule compression sleeve connection delivers fast, easy make-up and reliable bubble-tight performance in liquid or gas service.



Pressures to 15,000 psi (1034 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/8	W125	0.094 (2.39)	0.12	15,000 (1034)
1/4	W250	0.125 (3.18)	0.20	15,000 (1034)
3/8	W375	0.125 (3.18)	0.20	15,000 (1034)
1/2	SW500	0.250 (6.35)	0.86	10,000 (690)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

AUTOCI AVE ENGINEERS AUTOCIANE AUTOCIANE AUTOCIANE AUTOCIANE AUTOCIANE AUTOCIANE AUTOCIANE AND PI 1,000 poi 60.05 MAWP 11,000 po

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. 10V Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 10V4071 07 10V XX Outside Diameter Valve Stem/Seat Body Options **Tube Size** Series Pattern Type For extreme 2-1/8" 07 - non-rotating 1 - two-way straight temperature and other **4**-1/4" Vee stem (on-off service) 2 - two-way angle options, see Valve 6-3/8" 08 - non-rotating 3 - three-way, two on pressure Options. 8-1/2" regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two stem 87 - Vee stem with replaceable manifold valve Note: Contact Sales for 1/16"tube size or seat see MVE Series. 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box is available for service from -100°F (-73°C) to 650°F (343°C) by adding the following suffixes to catalog order number.+

TG standard valve with PTFE glass packing to 600°F (316°C). GY standard valve with graphite braided yarn packing to 650°F

B standard valve with cryogenic trim materials and Telfon packing to -100°F (-73°C).

†Parker Autoclave Engineers does not recommend compression sleeve connections below -100°F (-73°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

Valve Maintenance

add "R" to the front of valve catalog Repair Kits:

number for proper repair kit.

(Example: **R10V4071**)

Valve bodies are available. Order using the eight (8) Valve Bodies:

digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Stam	Outside	Orifice					Dime	nsions -	inches (mm)					Block Thick-	Valve
-	1	l	Diameter		В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern
-Way S	traig	ht															
10V2071	VEE	1/8**	0.094	1.50	0.75	0.31	1.06	0.81	1.38	3.00	0.62	0.17	3.75	0.56	0.31	0.62	
10V2081	REG	(3.18)	(2.39)	(38.10)	(19.05)	(7.87)	(26.92)	(20.57)	(35.05)	(76.20)	(15.75)	(4.32)	(95.25)	(14.22)	(7.87)	(15.75)	
10V4071	VEE	1/4	0.125	2.00	1.00	0.56	1.19		1.69	3.00	0.97	0.22	4.44	0.69	0.38	1.00	
10V4081	REG	(6.35)	(3.18)	(50.80)	(25.40)	(14.22)	(30.23)		(42.93)	(76.20)	(24.64)	(5.59)	(112.78)	(17.53)	(9.65)	(25.40)	See
10V6071	VEE	3/8	0.125	2.00	1.00	0.62	1.19		1.69	3.00	0.97	0.22	4.31	0.69	0.38	1.00	Figure 1
10V6081	REG	(9.53)	(3.18)	(50.80)	(25.40)	(15.75)	(30.23)		(42.93)	(76.20)	(24.64)	(5.59)	(109.47)	(17.53)	(9.65)	(25.40)	
10V8071	VEE	1/2	0.250	2.50	1.25	0.53	1.25		1.81	3.00	0.97	0.22	4.44	0.69	0.38	1.00	
10V8081	REG	(12.70)	(6.35)	(63.50)	(31.75)	(13.46)	(31.75)		(45.97)	(76.20)	(24.64)	(5.59)	(112.78)	(17.53)	(9.65)	(25.40)	
-Way A	ngle									•	•		•				
10V2072	VEE	1/8	0.094	1.50	0.75	0.31	0.81		1.56	3.00	0.62	0.17	3.94	0.56	0.31	0.62	
10V2082	REG	(3.18)	(2.39)	(38.1)	(19.05)	(7.87)	(20.57)		(39.62)	(76.20)	(15.75)	(4.32)	(100.08)	(12.70)	(7.87)	(15.75)	
10V4072	VEE	1/4	0.125	2.00	1.00	0.56	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.31	1.00	
10V4082	REG	(6.35)	(3.18)	(50.80)	(25.40)	(14.2)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(7.87)	(25.40)	See
10V6072	VEE	3/8	0.125	2.00	1.00	0.62	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.31	1.00	Figure 2
10V6082	REG	(9.53)	(3.18)	(50.80)	(25.40)	(15.7)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(7.87)	(25.40)	

10V8082 | REG (12.70) 3-Way / 2 on Pressure

10V8072 | **VEE** | 1/2

-																	
10V2073	VEE	1/8**	0.094	1.50	0.75	0.31	1.06	0.81	1.69	3.00	0.62	0.17	4.06	0.56	0.31	0.62	
10V2083	REG	(3.18)	(2.39)	(38.10)	(19.05)	(7.87)	(26.92)	20.57	(42.93)	(76.20)	(15.75)	(4.32)	(103.12)	(12.70)	(7.87)	(15.75)	
10V4073	VEE	1/4	0.125	2.00	1.00	0.56	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.38	1.00	
10V4083	REG	(6.35)	(3.18)	(50.80)	(25.40)	(14.22)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(9.65)	(25.40)	See
10V6073	VEE	3/8	0.125	2.00	1.00	0.62	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.38	1.00	Figure 3
10V6083	REG	(9.53)	(3.18)	(50.80)	(25.40)	(15.75)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(9.65)	(25.40)	
10V8073	VEE	1/2	0.250	2.50	1.25	0.53	1.19		2.44	3.00	0.97	0.22	5.06	0.69	0.38	1.00	
10V8083	REG	(12.70)	(6.35)	(63.50)	(31.75)	(13.46)	(30.23)		(61.98)	(76.20)	(24.64)	(5.59)	(128.52)	(17.53)	(9.65)	(25.40)	

2.50

(63.50)

3.00

(76.20)

0.97

(24.64)

0.22

(5.59)

5.06

(128.52) (17.53)

0.69

0.38

(9.65)

1.00

(25.40)

G - Packing gland mounting hole drill size

0.250

(6.35)

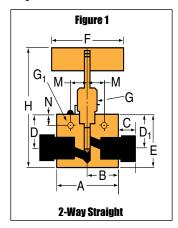
2.50

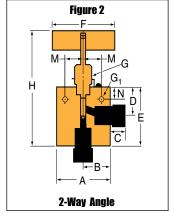
(63.50)

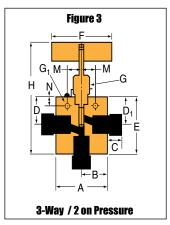
1.25

(31.75)

0.53

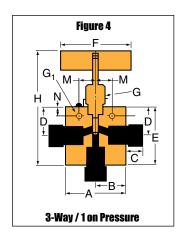

(13.5)

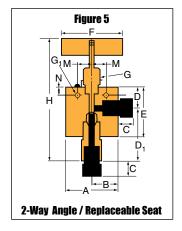

1.25

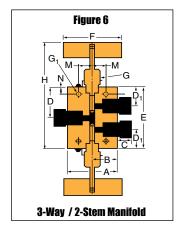

(31.75)

- G₁ Bracket mounting hole size Panel mounting drill size: 0.22" all valves.
- * H Dimension is with stem in closed position.
- ** 1/8" straight and 3-Way/2 on pressure valves have offset tube connections.

For prompt service, Autoclave stocks select products. Consult factory. All dimensions for reference only and subject to change.

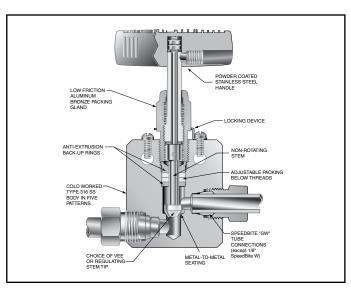





Catalog	Stam	Outside Diameter	Orifice					Dime	nsions -	inches (mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	C	D	D ₁	E	F	G	G ₁	H*	М	N	ness	Pattern
Way /	1 on F	ressu	ire														
0V2074	VEE	1/8	0.094	1.50	0.75	0.31	0.81		1.56	3.00	0.62	0.17	3.94	0.56	0.31	0.62	
0V2084	REG	(3.18)	(2.39)	(38.1)	(19.05)	(7.87)	(20.57)		(39.62)	(76.20)	(15.75)	(4.32)	(100.08)	(12.70)	(7.87)	(15.7)	
0V4074	VEE	1/4	0.125	2.00	1.00	0.56	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.38	1.00	
0V4084	REG	(6.35)	(3.18)	(50.8)	(25.40)	(14.22)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(9.65)	(25.40)	See
0V6074	VEE	3/8	0.125	2.00	1.00	0.62	1.19		2.19	3.00	0.97	0.22	4.81	0.69	0.38	1.00	Figure 4
0V6084	REG	(9.53)	(3.18)	(50.8)	(25.40)	(15.75)	(30.23)		(55.63)	(76.20)	(24.64)	(5.59)	(122.17)	(17.53)	(9.65)	(25.40)	
0V8074	VEE	1/2	0.250	2.50	1.25	0.53	1.19		2.44	3.00	0.97	0.22	5.06	0.69	0.38	1.00	
0V8084	REG	(12.70)	(6.35)	(63.5)	(31.75)	(13.46)	(30.23)		(61.98)	(76.20)	(24.64)	(5.59)	(128.52)	(17.53)	(9.65)	(25.40)	
-Way A	ngle	/ Repl	aceab	le Seat	t												
0V2872	VEE	1/8	0.094	1.50	0.75	0.31	0.81	1.28	1.56	3.00	0.62	0.17	4.50	0.56	0.31	0.62	
0V2882	REG	(3.18)	(2.39)	(38.10)	(19.05)	(7.87)	(20.57)	(32.51)	(39.62)	(76.20)	(15.75)	(4.32)	(114.30)	(12.70)	(7.87)	(15.75)	
0V4872	VEE	1/4	0.125	2.00	1.00	0.56	1.12	2.13	2.25	3.00	0.97	0.22	6.00	0.69	0.38	1.00	
0V4882	REG	(6.35)	(3.18)	(50.80)	(25.40)	(14.22)	(28.45)	(54.10)	(57.15)	(76.20)	(24.64)	(5.59)	(152.40)	(17.53)	(9.65)	(25.40)	See
0V6872	VEE	3/8	0.125	2.00	1.00	0.62	1.12	2.28	2.25	3.00	0.97	0.22	6.00	0.69	0.38	1.00	Figure 5
OV6882	REG	(9.53)	(3.18)	(50.80)	(25.40)	(15.75)	(28.45)	(57.91)	(57.15)	(76.20)	(24.64)	(5.59)	(152.40)	(17.53)	(9.65)	(25.40)	
0V8872	VEE	1/2	0.250	2.50	1.25	0.53	1.00	2.50	2.38	3.00	0.97	0.28	6.06	0.69	0.38	1.00	
0V8882	REG	(12.70)	(6.35)	(63.50)	(31.75)	(13.46)	(25.45)	(63.50)	(60.45)	(76.20)	(24.64)	(7.11)	(153.92)	(17.53)	(9.65)	(25.40)	
-Way /	2-St	em Ma	nifold														
0V2075	VEE	1/8	0.094	1.50	0.75	0.31	1.12	0.81	2.25	3.00	0.62	0.17	4.63	0.56	0.31	0.62	
0V2085	REG	(3.18)	(2.39)	(38.10)	(19.05)	(7.87)	(28.45)	(20.57)	(57.15)	(76.20)	(15.75)	(4.32)	(117.60)	(12.70)	(7.87)	(15.7)	
0V4075	VEE	1/4	0.125	2.00	1.00	0.56	1.69	1.09	3.38	3.00	0.97	0.22	5.82	0.69	0.38	1.00	
0V4085	REG	(6.35)	(3.18)	(50.80)	(25.40)	(14.22)	(42.93)	(27.69)	(85.85)	(76.20)	(24.64)	(5.59)	(147.83)	(17.53)	(9.65)	(25.40)	See
OV6075	VEE	3/8	0.125	2.00	1.00	0.62	1.69	1.09	3.38	3.00	0.97	0.22	5.82	0.69	0.38	1.00	Figure 6
OV6085	REG	(9.53)	(3.18)	(50.80)	(25.40)	(15.75)	(42.93)	(27.69)	(85.85)	(76.20)	(24.64)	(5.59)	(147.83)	(17.53)	(9.65)	(25.40)	
0V8075	VEE	1/2	0.250	2.50	1.25	0.53	1.69	1.03	3.38	3.00	0.97	0.22	5.82	0.69	0.38	1.00	
0V8085	REG	(12.70)	(6.35)	(63.50)	(31.75)	(13.46)	(42.93)	(26.16)	(85.85)	(76.20)	(24.64)	(5.59)	(147.83)	(17.53)	(9.65)	(25.40)	

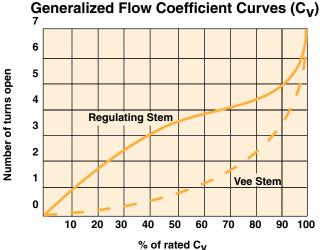
G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

For prompt service, Autoclave stocks select products.
Consult factory.


^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Pressures to 15,000 psi (1034 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/8	W125— R	efer to 10V Serie	s Valves	_
1/4	SW250	0.188 (4.77)	0.65	15,000 (1034)
3/8	SW375	0.250 (6.35)	0.95	15,000 (1034)
1/2	SW500	0.375 (9.52)	1.90	10,000 (690)


Notes

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. SW Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: SW4071 SW 07 XX Valve **Outside Diameter** Stem/Seat Body Options Pattern Series **Tube Size** Type For extreme 4-1/4" 07 - non-rotating 1 - two-way straight temperature and other 6-3/8" Vee stem (on off service) 2 - two-way angle options, see Valve 8-1/2" 08 - non-rotating 3 - three-way, two on pressure Options. regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two stem 87 - Vee stem with replaceable manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box are available for service from -100°F (-73°C) to 650°F (343°C) by adding the following suffixes to catalog order number.+ TG standard valve with PTFE glass packing to 600°F (316°C). GY standard valve with graphite braided yarn packing to 650°F

B standard valve with cryogenic trim materials and Telfon packing to -100°F (-73°C).

†Parker Autoclave Engineers does not recommend compression sleeve connections below -100°F (-73°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit.

(Example: **RSW4071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found on the valve drawing or contact your Sales Representative for information.

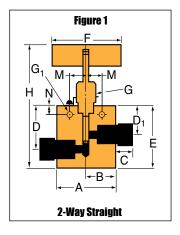
Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

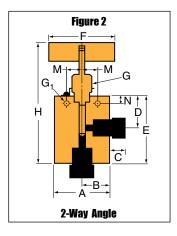
Catalog	Stom	Outside Diameter	Orifico					Dim	ensions	- inches	(mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	C	D	D ₁	E	F	G	G ₁	H*	M	N	ness	Pattern
-Way S	Straig	ht															
SW4071	VEE	1/4	0.187	2.00	1.00	0.38	1.62	1.19	2.00	3.00	0.75	0.22	4.50	0.62	0.38	0.75	
SW4081	REG	(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(114.30)	(15.75)	(9.65)	(19.05)	
SW6071	VEE	3/8	0.250	2.00	1.00	0.47	1.62	1.19	2.00	3.00	0.75	0.22	4.50	0.62	0.38	0.75	See
SW6081	REG	(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(114.30)	(15.75)	(9.65)	(19.05)	Figure 1
SW8071	VEE	1/2	0.375	2.50	1.25	0.53	2.38	1.75	2.88	4.00	1.00	0.34	5.95	0.69	0.50	1.00	
SW8081	REG	(12.70)	(9.53)	(63.50)	(31.75)	(13.46)	(60.45)	(44.45)	(73.15)	(101.60)	(25.40)	(8.64)	(151.37)	(17.53)	(12.70)	(25.40)	
2-Way I SW4072	VEE	1/4	0.187	2.00	1.00	0.38	1.19		2.43	3.00	0.75	0.22	5.00	0.62	0.38	0.75	
SW4072 SW4082		(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(30.23)		(61.72)	(76.20)	(19.05)	(5.59)	(127.00)	0.00	(9.65)	(19.05)	
SW6072		3/8	0.250	2.00	1.00	0.47	1.19		2.19	3.00	0.75	0.22	5.00	0.62	0.38	0.75	See
SW6082		(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(30.23)		(55.63)	(76.20)	(19.05)	(5.59)	(127.00)		(9.65)	(19.05)	Figure 2
SW8072		1/2	0.375	2.50	1.25	0.53	1.75		3.38	4.00	1.00	0.34	6.45	0.69	0.50	1.00	•
SW8082	1	(12.70)	(9.53)	(63.50)	(31.75)	(13.46)	(44.45)		(85.85)	(101.60)		(8.64)	(163.83)		(12.70)	(25.40)	
-Way /		, ,	(/	(*****)	(5 5)	(10110)	()		(55,55)	(*******)	(==::=)	(3.3.)	(100100)	(11100)	()	(====)	
SW4073	VEE	1/4	0.187	2.00	1.00	0.38	1.62	1.19	2.62	3.00	0.75	0.22	5.18	0.62	0.38	0.75	
SW4083	REG	(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(41.15)	(30.23)	(66.55)	(76.20)	(19.05)	(5.59)	(131.57)	(15.75)	(9.65)	(19.05)	
SW6073	VEE	3/8	0.250	2.00	1.00	0.47	1.62	1.19	2.62	3.00	0.75	0.22	5.13	0.62	0.38	0.75	See
SW6083	REG	(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(41.15)	(30.23)	(66.55)	(76.20)	(19.05)	(5.59)	(130.30)	(15.75)	(9.65)	(19.05)	Figure 3
SW8073	VEE	1/2	0.375	2.50	1.25	0.53	2.38	1.75	3.62	4.00	1.00	0.34	6.70	0.69	0.50	1.00	

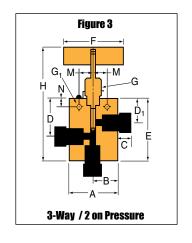
G - Packing gland mounting hole drill size

SW8083 REG (12.70) (9.53) (63.50) (31.75)

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.


* H Dimension is with stem in closed position. All dimensions for reference only and subject to change.


(44.45) (91.95) (101.60) (25.40) (8.64) (170.18) (17.53)


(13.46) (60.45)

For prompt service, Autoclave stocks select products. Consult factory.

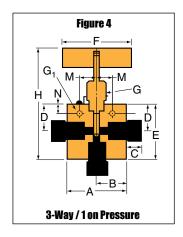
(12.70) (25.40)

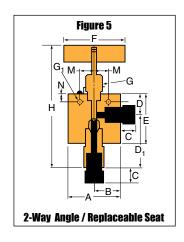
Catalog	Stem	Outside Diameter	Orifico					Dimer	nsions -i	nches (r	nm)					Block Thick-	Valve
Numbe	,	l	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

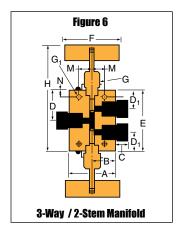
3-Way / 1 on Pressure

SW4074	VEE	1/4	0.187	2.00	1.00	0.38	1.19	2.43	3.00	0.75	0.22	5.00	0.62	0.38	0.75	
SW4084	REG	(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(30.23)	(61.72)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(19.05)	
SW6074	VEE	3/8	0.250	2.00	1.00	0.47	1.19	2.43	3.00	0.75	0.22	5.00	0.62	0.38	0.75	See
SW6084	REG	(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(30.23)	(61.72)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(19.05)	Figure 4
SW8074	VEE	1/2	0.375	2.50	1.25	0.53	1.75	3.38	4.00	1.00	0.34	6.45	0.69	0.50	1.00	
SW8084	REG	(12.70)	(9.53)	(63.50)	(31.75)	(13.46)	(44.45)	(85.85)	(101.60)	(25.40)	(8.64)	(163.83)	(17.53)	(12.70)	(25.40)	

2-Way Angle / Replaceable Seat


SW4872	VEE	1/4	0.187	2.00	1.00	0.38	1.19	1.88	2.25	3.00	0.75	0.22	5.75	0.62	0.38	0.75	
SW4882	REG	(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(30.23)	(47.75)	(57.15)	(76.20)	(19.05)	(5.59)	(146.05)	(15.75)	(9.65)	(19.05)	
SW6872	VEE	3/8	0.250	2.00	1.00	0.47	1.19	2.19	2.25	3.00	0.75	0.22	5.75	0.62	0.38	0.75	See
SW6882	REG	(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(30.23)	(55.62)	(57.15)	(76.20)	(19.05)	(5.59)	(146.05)	(15.75)	(9.65)	(19.05)	Figure 5
SW8872	VEE	1/2	0.375	2.50	1.25	0.53	1.75	2.50	3.25	4.00	1.00	0.34	7.51	0.69	0.50	1.00	
SW8882	REG	(12.70)	(9.53)	(63.50)	(31.75)	(13.46)	(44.45)	(63.50)	(82.55)	(101.60)	(25.40)	(8.64)	(190.75)	(17.53)	(12.70)	(25.40)	


3-Way / 2-Stem Manifold


SW4075	VEE	1/4	0.187	2.00	1.00	0.38	1.68	1.19	3.38	3.00	0.75	0.22	5.94	0.62	0.38	0.75	
SW4085	REG	(6.35)	(4.75)	(50.80)	(25.40)	(9.65)	(42.67)	(30.23)	(85.85)	(76.20)	(19.05)	(5.59)	(150.88)	(15.75)	(9.65)	(19.05)	
SW6075	VEE	3/8	0.250	2.00	1.00	0.47	1.68	1.19	3.38	3.00	0.75	0.22	5.94	0.62	0.38	0.75	See
SW6085	REG	(9.53)	(6.35)	(50.80)	(25.40)	(11.94)	(42.67)	(30.23)	(85.85)	(76.20)	(19.05)	(5.59)	(150.88)	(15.75)	(9.65)	(19.05)	Figure 6
SW8075	VEE	1/2	0.375	2.50	1.25	0.53	2.56	1.75	5.12	4.00	1.00	0.34	8.20	0.69	0.50	1.00	
SW8085	REG	(12.70)	(9.53)	(63.50)	(31.75)	(13.46)	(65.02)	(44.45)	(130.05)	(101.60)	(25.40)	(8.64)	(208.28)	(17.53)	(12.70)	(25.40)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

For prompt service, Autoclave stocks select products. Consult factory.

All general terms and conditions of sale, including limitations of our liability, apply to all products and services sold.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0102SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Medium Pressure

15SM Series

Pressures to 15,000 psi (1034 bar)

Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave Engineers a reputation for reliable efficient product performance. Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, waterblast, research, and oil and gas industries.

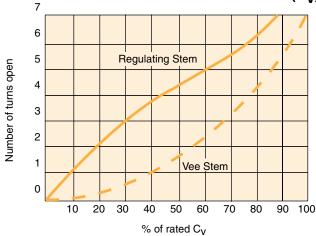
Medium Pressure Valve Features:

- Largest-port valve available for medium pressure applications.
- Tubing size 1-1/2".
- · Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- New one piece stem design permits ease of assembly and packing replacement.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tip.
- Available in two body patterns.

Parker Autoclave Engineers valves are complemented by a complete line of fittings and tubing. The SM Series uses Parker Autoclave Engineers' Medium pressure coned and threaded connection.

Pressures to 15,000 psi (1034 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1-1/2	SF1500CX	.937 (23.80)	14	15,000 (1034)


Notes

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

LOW FRICTION ALLMINUM B CHOICE OF VEE OR REGULATING STEM TIP

Generalized Flow Coefficient Curves (C_V)

To ensure proper fit use Parker Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. 15SM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 15SM24071 15SM 24 07 XX Outside Diameter Valve Stem/Seat Body Options **Tube Size** Pattern Series Type For extreme 07 - non-rotating 24-1-1/2" 1 - two-way straight temperature and other Vee stem (on-off service) 2 - two-way angle options, see 08 - non-rotating Valve Options. regulating stem (tapered tip for regulating and shutoff)

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing and/or extended stuffing box are available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG standard valve with PTFE glass packing to 600°F (316°C).

GY standard valve with graphite braided yarn packing to 800°F (427°C).

Note: Contact factory for pressure ratings using graphite yarn packing.

HT extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B standard valve with cryogenic trim materials and PTFE packing to -100°F (-73°C).

LT extended stuffing box valve with PTFE packing and cryogenic trim materials to -423°F (-252°C).

K anti-vibration collet and gland assembly

See needle valve options for stem and seat coating for erosive service.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R15SM24071**)

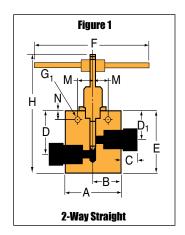
Valve Bodies: Valve bodies are available. Order using the eight (8)

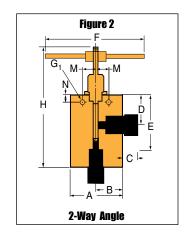
digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Note: Caution should be exercised in proper selection of medium pressure tubing based on actual operating conditions. Two tubing series available in some sizes: 15,000 psi (1034 bar) and 20,000 psi (1380 bar).

Catalon	Stem	Pipe	Orifice					Dime	rsions -	inches (n	nm)					Block	Fitting
Number	Туре	Size	Dia.	A	В	C	D	D¹	E	F	G	G¹	Н	M	N	Thick- ness	Pattern


2-Way Straight


15SM24071	VEE	1-1/2	0.937	5.75	2.88	1.00	5.25	3.75	6.38	23.75	0.75	10.98	1.88	1.50	2.25	See
15SM24081	REG	(38.10)	(23.80)	(146.05)	(73.03)	(25.40)	(133.35)	(95.25)	(161.93)	(603.25)	(19.05)	(278.79)	(47.63)	(38.10)	(57.15)	Fig. 1

2-Way Angle

	-															
15SM24072	VEE	1-1/2	0.937	5.75	2.88	1.00	3.75	6.75	23.75	0.75	11.35	1.88	1.50	2.25	See	
15SM24082	REG	(38.10)	(23.80)	(146.05)	(73.03)	(25.40)	(95.25)	(171.45)	(603.25)	(19.05)	(288.32)	(47.63)	(38.10)	(57.15)	Fig. 2	

G - Packing gland mounting hole drill size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.75" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-9225BE

January2013

Autoclave Engineers

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

 $\begin{tabular}{ll} \textbf{Caution!} & Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty. \end{tabular}$

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Medium Pressure

SM Series

Pressures to 20,000 psi (1379 bar)

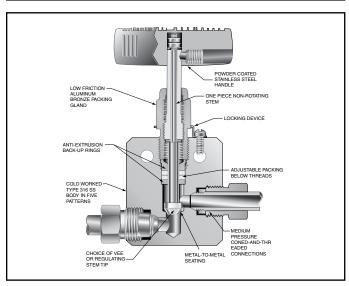
Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave Engineers a reputation for reliable efficient product performance. Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, waterblast, research, and oil and gas industries.

Medium Pressure Valve Features:

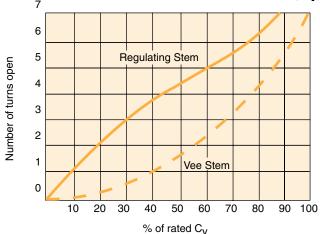
- Largest-port valves available for medium pressure applications.
- Tubing sizes available from 1/4" to 1".
- · Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- New one piece stem design permits ease of assembly and packing replacement.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tip.
- · Available in five body patterns.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, check valves and line filters. The SM Series uses Parker Autoclave Engineers' Medium pressure connection. The coned-and-threaded connection features orifice sizes to match the high flow characteristics of this series.

Note: SM Series replaces 20SC Series.



Pressures to 20,000 psi (1379 bar)


Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	SF250CX20	0.125 (3.18)	0.31	20,000 (1379)
3/8	SF375CX20	0.219 (5.56)	0.75	20,000 (1379)
9/16	SF562CX20	0.312 (7.92)	1.30	20,000 (1379)
3/4	SF750CX20	0.438 (11.13)	2.50	20,000 (1379)
1	SF1000CX20	0.562 (14.27)	4.40	20,000 (1379)
9/16	SF562CX10	0.359 (9.12)	1.75	10,000 (690)
3/4	SF750CX10	0.516 (13.10)	2.80	10,000 (690)
1	SF1000CX10	0.688 (17.48)	5.20	10,000 (690)

Notes.

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

Generalized Flow Coefficient Curves (C_V)

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. 10SM and 20SM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 20SM4071 **20SM** 07 XX Outside Diameter Valve Stem/Seat Body Options **Tube Size** Pattern Series Type For extreme 07 - non-rotating 1 - two-way straight 4-1/4" temperature and other Vee stem (on-off service) 10SM 6-3/8" 2 - two-way angle options, see **20SM** 9-9/16" 08 - non-rotating 3 - three-way, two on pressure Valve Options. **12**-3/4" regulating stem (tapered tip 4 - three-way, one on pressure 16-1" for regulating and shutoff) 5 - three-way, two stem 87 - Vee stem with replaceable seat manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing and/or extended stuffing box are available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG standard valve with PTFE glass packing to 600°F (316°C).

GY standard valve with graphite braided yarn packing to 800°F (427°C). *Note: 3/4" rated 8000 psi (552 bar) and 1" rated 6000 psi (412 bar) maximum with graphite yarn packing.*

HT extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B standard valve with cryogenic trim materials and PTFE packing to -100°F (-73°C).

LT extended stuffing box valve with PTFE packing and cryogenic trim materials to -423°F (-252°C).

K anti-vibration collet and gland assembly

See needle valve options for stem and seat coating for erosive service.

Valve Maintenance

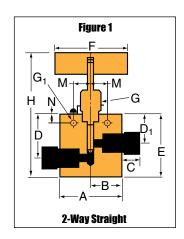
Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R20SM4071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineersrepresentative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.


Note: Caution should be exercised in proper selection of medium pressure tubing based on actual operating conditions. Two tubing series available in some sizes: 15,000 psi (1034 bar) and 20,000 psi (1380 bar).

Catalon	Stem	Outside Diameter	Orifico					Dime	ensions -	inches ((mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

2-Way Straight

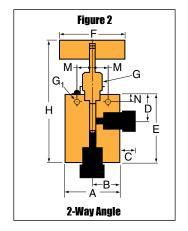
Z-way 3	u ary	IIIL															
20SM4071	VEE	1/4	0.125	2.00	1.00	0.38	1.62	1.19	2.00	3.00	0.75	0.22	4.69	0.62	0.38	0.75	
20SM4081	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(119.13)	(15.75)	(9.65)	(19.05)	
20SM6071	VEE	3/8	0.219	2.00	1.00	0.47	1.62	1.19	2.00	3.00	0.75	0.22	4.63	0.62	0.38	0.75	
20SM6081	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(117.48)	(15.75)	(9.65)	(19.05)	
20SM9071	VEE	9/16	0.312	2.50	1.25	0.53	2.38	1.75	2.88	4.00	1.00	0.34	5.93	0.69	0.50	1.00	
20SM9081	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(60.45)	(44.45)	(73.15)	(101.60)	(25.40)	(8.64)	(150.86)	(17.53)	(12.70)	(25.40)	
20SM12071	VEE	3/4	0.438	3.00	1.50	0.62	3.00	2.25	3.75	10.25	1.12	0.44	7.00	0.88	0.63	1.38	Saa
20SM12081	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(76.20)	(57.15)	(95.25)	(260.35)	(28.45)	(11.18)	(177.80)	(22.35)	(16.00)	(35.05)	See Figure 1
20SM16071	VEE	1	0.562	4.12	2.06	0.63	3.75	2.81	4.63	10.25	1.62	0.56	9.00	1.25	1.13	1.75	riguic i
20SM16081	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(117.60)	(260.35)	(41.15)	(14.22)	(228.84)	(31.75)	(28.70)	(44.4 5)	
10SM9071	VEE	9/16	0.359	2.50	1.25	0.53	2.38	1.75	2.88	4.00	1.00	0.34	5.93	0.69	0.50	1.00	
10SM9081	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(60.45)	(44.45)	(73.15)	(101.60)	(25.40)	(8.64)	(150.86)	(17.53)	(12.70)	(25.40)	
10SM12071	VEE	3/4	0.516	3.00	1.50	0.62	3.00	2.25	3.75	10.25	1.12	0.44	7.00	0.88	0.63	1.38	
10SM12081	REG	(19.05)	(13.11)	(76.20)	(38.10)	(15.75)	(76.20)	(57.15)	(95.25)	(260.35)	(28.45)	(11.18)	(177.80)	(22.35)	(16.00)	(35.05)	
10SM16071	VEE	1	0.688	4.12	2.06	0.63	3.75	2.81	4.63	10.25	1.62	0.56	9.00	1.25	1.13	1.75	
10SM16081	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(117.60)	(260.35)	(41.15)	(14.22)	(228.84)	(31.75)	(28.70)	(44.45)	

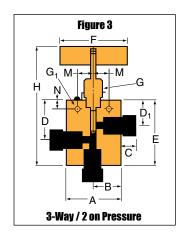
G - Packing gland mounting hole drill size G₄ - Bracket mounting hole size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Catalon	Stom	Outside	Orifice					Dime	ensions -	inches	(mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern


2-Way Angle


_	_															
20SM4072	VEE	1/4	0.125	2.00	1.00	0.38	1.19	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
20SM4082	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(30.23)	(61.90)	(76.20)	(19.05)	(5.59)	(122.25)	(15.75)	(9.65)	(19.05)	
20SM6072	VEE	3/8	0.219	2.00	1.00	0.47	1.19	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
20SM6082	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(30.23)	(61.90)	(76.20)	(19.05)	(5.59)	(122.25)	(15.75)	(9.65)	(19.05)	
20SM9072	VEE	9/16	0.312	2.50	1.25	0.53	1.75	3.38	4.00	1.00	0.34	6.43	0.69	0.50	1.00	
20SM9082	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(44.45)	(85.85)	(101.60)	(25.40)	(8.64)	(163.56)	(17.53)	(12.70)	(25.40)	
20SM12072	VEE	3/4	0.438	3.00	1.50	0.62	2.25	4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.38	Soo
20SM12082	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(57.15)	(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(35.05)	See Figure 2
20SM16072	VEE	1	0.562	4.12	2.06	0.63	2.81	5.12	10.25	1.62	0.56	9.00	1.25	1.13	1.75	riguic 2
20SM16082	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(71.37)	(130.05)	(260.35)	(41.15)	(14.22)	(228.84)	(31.75)	(28.70)	(44.4 5)	
10SM9072	VEE	9/16	0.359	2.50	1.25	0.53	1.75	3.38	4.00	1.00	0.34	6.43	0.69	0.50	1.00	
10SM9082	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(44.45)	(85.85)	(101.60)	(25.40)	(8.64)	(163.56)	(17.53)	(12.70)	(25.40)	
10SM12072	VEE	3/4	0.516	3.00	1.50	0.62	2.25	4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.38	
10SM12082	REG	(19.03)	(13.11)	(76.20)	(38.10)	(15.75)	(57.15)	(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(35.05)	
10SM16072	VEE	1	0.688	4.12	2.06	0.63	2.81	5.12	10.25	1.62	0.56	9.00	1.25	1.13	1.75	
10SM16082	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(71.37)	(130.05)	(260.35)	(41.15)	(14.22)	(228.84)	(31.75)	(28.70)	(44.45)	

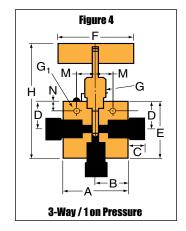
3-Way / 2 on Pressure

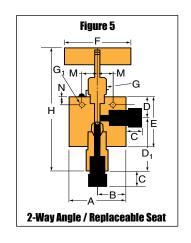
20SM4073 VEE 1/4 0.125 2.00 1.00 0.38 1.63 1.19 2.63 3.00 0.75 0.22 5.00 0.62 0.38 0.75																		
20SM6073 VEE 3/8 0.219 2.00 1.00 0.47 1.63 1.19 2.63 3.00 0.75 0.22 5.00 0.62 0.38 0.75 20SM6083 REG (9.53) (5.56) (50.80) (25.40) (11.94) (41.28) (30.23) (66.68) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (19.05) 20SM9073 VEE 9/16 0.312 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.51 0.69 0.50 1.00 20SM9083 REG (14.29) (7.92) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 20SM12073 VEE 3/4 0.438 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 20SM12083 REG (19.05) (11.13) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 20SM16083 REG (25.40) (14.27) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.4 5) 10SM9083 REG (14.29) (9.12) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12073 VEE 1 0.688 4.12 2.06 0.63 3.75 (2.81) 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM4073	VEE	1/4	0.125	2.00	1.00	0.38	1.63	1.19	2.63	3.00	0.75	0.22	5.00	0.62	0.38	0.75	
20SM6083 REG (9.53) (5.56) (50.80) (25.40) (11.94) (41.28) (30.23) (66.68) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (19.05) 20SM9073 VEE 9/16 0.312 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.51 0.69 0.50 1.00 20SM9083 REG (14.29) (7.92) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 20SM12073 VEE 3/4 0.438 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.35 20SM12073 VEE 1 0.562 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.118 (200.03) (22.35) (16.00) (35.0	20SM4083	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(41.28)	(30.23)	(66.68)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(19.05)	
20SM9073 VEE 9/16 0.312 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.51 0.69 0.50 1.00 20SM9083 REG (14.29) (7.92) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 20SM12073 VEE 3/4 0.438 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 20SM12083 REG (19.05) (11.13) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 20SM16083 REG (19.05) (11.23) (76.20) (35.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70)	20SM6073	VEE	3/8	0.219	2.00	1.00	0.47	1.63	1.19	2.63	3.00	0.75	0.22	5.00	0.62	0.38	0.75	
20SM9083 REG (14.29) (7.92) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) (20SM6083	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(41.28)	(30.23)	(66.68)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(19.05)	
20SM12073 VEE 3/4 0.438 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 20SM12083 REG (19.05) (11.13) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) (20SM16073) VEE 1 0.562 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75 20SM16083 REG (25.40) (14.27) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.4 5) 10SM9073 VEE 9/16 0.359 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.52 0.69 0.50 1.00 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12083 REG (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM9073	VEE	9/16	0.312	2.50	1.25	0.53	2.38	1.75	3.63	4.00	1.00	0.34	6.51	0.69	0.50	1.00	
20SM12083 REG (19.05) (11.13) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) (20SM16073 VEE 1 0.562 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75 (20SM16083 REG (25.40) (14.27) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.4 5) (10SM9073 VEE 9/16 0.359 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.52 0.69 0.50 1.00 (10SM9083 REG (14.29) (9.12) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) (10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) (10SM12073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM9083	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(60.45)	(44.45)	(92.08)	(101.60)	(25.40)	(8.64)	(165.59)	(17.53)	(12.70)	(25.40)	
20SM16073 VEE 1 0.562 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75 20SM16083 REG (25.40) (14.27) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.4 5) 10SM9073 VEE 9/16 0.359 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.52 0.69 0.50 1.00 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12083 REG (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM12073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM12073	VEE	3/4	0.438	3.00	1.50	0.62	3.00	2.25	4.63	10.25	1.12	0.44	7.88	0.88	0.63	1.38	Coo
20SM16083 REG (25.40) (14.27) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.4 5) (105M12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10.8M12083 REG (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) (15.	20SM12083	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(76.20)	(57.15)	(117.48)	(260.35)	(28.45)	(11.18)	(200.03)	(22.35)	(16.00)	(35.05)	
10SM9073 VEE 9/16 0.359 2.50 1.25 0.53 2.38 1.75 3.63 4.00 1.00 0.34 6.52 0.69 0.50 1.00 10SM9083 REG (14.29) (9.12) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12083 REG (19.03) (13.11) (76.20) (38.10) (75.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM16073	VEE	1	0.562	4.12	2.06	0.63	3.75	2.81	5.88	10.25	1.62	0.56	9.75	1.25	1.13	1.75	riguic 5
10SM9083 REG (14.29) (9.12) (63.50) (31.75) (13.46) (60.45) (44.45) (92.08) (101.60) (25.40) (8.64) (165.59) (17.53) (12.70) (25.40) 10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12083 REG (19.03) (13.11) (76.20) (38.10) (75.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	20SM16083	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(149.35)	(260.35)	(41.15)	(14.22)	(247.89)	(31.75)	(28.70)	(44.4 5)	
10SM12073 VEE 3/4 0.516 3.00 1.50 0.62 3.00 2.25 4.63 10.25 1.12 0.44 7.88 0.88 0.63 1.38 10SM12083 REG (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	10SM9073	VEE	9/16	0.359	2.50	1.25	0.53	2.38	1.75	3.63	4.00	1.00	0.34	6.52	0.69	0.50	1.00	
10SM12083 REG (19.03) (13.11) (76.20) (38.10) (15.75) (76.20) (57.15) (117.48) (260.35) (28.45) (11.18) (200.03) (22.35) (16.00) (35.05) 10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	10SM9083	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(60.45)	(44.45)	(92.08)	(101.60)	(25.40)	(8.64)	(165.59)	(17.53)	(12.70)	(25.40)	
10SM16073 VEE 1 0.688 4.12 2.06 0.63 3.75 2.81 5.88 10.25 1.62 0.56 9.75 1.25 1.13 1.75	10SM12073	VEE	3/4	0.516	3.00	1.50	0.62	3.00	2.25	4.63	10.25	1.12	0.44	7.88	0.88	0.63	1.38	
	10SM12083	REG	(19.03)	(13.11)	(76.20)	(38.10)	(15.75)	(76.20)	(57.15)	(117.48)	(260.35)	(28.45)	(11.18)	(200.03)	(22.35)	(16.00)	(35.05)	
10SM16083 RFG (25.40) (17.48) (104.65) (52.32) (16.00) (95.25) (71.37) (149.35) (260.35) (41.15) (14.22) (247.89) (31.75) (28.70) (44.45)	10SM16073	VEE	1	0.688	4.12	2.06	0.63	3.75	2.81	5.88	10.25	1.62	0.56	9.75	1.25	1.13	1.75	
1.50 1.5	10SM16083	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(149.35)	(260.35)	(41.15)	(14.22)	(247.89)	(31.75)	(28.70)	(44.45)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Catalon	Stom	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

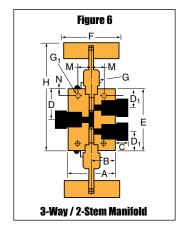

3-Way / 1 on Pressure


U-Way /																
20SM4074	VEE	1/4	0.125	2.00	1.00	0.38	1.19	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
20SM4084	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(30.23)	(61.90)	(76.20)	(19.05)	(5.59)	(122.25)	(15.75)	(9.65)	(19.05)	
20SM6074	VEE	3/8	0.219	2.00	1.00	0.47	1.19	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
20SM6084	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(30.23)	(61.90)	(76.20)	(19.05)	(5.59)	(122.25)	(15.75)	(9.65)	(19.05)	
20SM9074	VEE	9/16	0.312	2.50	1.25	0.53	1.75	3.38	4.00	1.00	0.34	6.31	0.69	0.50	1.00	
20SM9084	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(44.45)	(85.85)	(101.60)	(25.40)	(8.64)	(160.56)	(17.53)	(12.70)	(25.40)	
20SM12074	VEE	3/4	0.438	3.00	1.50	0.62	2.25	4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.38	Saa
20SM12084	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(57.15)	(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(35.05)	See Figure 4
20SM16074	VEE	1	0.562	4.12	2.06	0.63	2.81	5.12	10.25	1.62	0.56	9.09	1.25	1.13	1.75	riguie 4
20SM16084	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(71.37)	(130.05)	(260.35)	(41.15)	(14.22)	(231.13)	(31.75)	(28.70)	(44.4 5)	
10SM9074	VEE	9/16	0.359	2.50	1.25	0.53	1.75	3.38	4.00	1.00	0.34	6.31	0.69	0.50	1.00	
10SM9084	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(44.45)	(85.85)	(101.60)	(25.40)	(8.64)	(160.56)	(17.53)	(12.70)	(25.40)	
10SM12074	VEE	3/4	0.516	3.00	1.50	0.62	2.25	4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.38	
10SM12084	REG	(19.03)	(13.11)	(76.20)	(38.10)	(15.75)	(57.15)	(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(35.05)	
10SM16074	VEE	1	0.688	4.12	2.06	0.63	2.81	5.12	10.25	1.62	0.56	9.09	1.25	1.13	1.75	
10SM16084	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(71.37)	(130.05)	(260.35)	(41.15)	(14.22)	(231.13)	(31.75)	(28.70)	(44.45)	

2-Way Angle / Replaceable Seat

Z-VVay A	iigiu	пори	uooun	io oout													
20SM4872	VEE	1/4	0.125	2.00	1.00	0.38	1.19	2.13	2.25	3.00	0.75	0.22	5.75	0.62	0.38	0.75	
20SM4882	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(30.23)	(53.98)	(57.15)	(76.20)	(19.05)	(5.59)	(146.05)	(15.75)	(9.65)	(19.05)	
20SM6872	VEE	3/8	0.219	2.00	1.00	0.47	1.19	2.13	2.25	3.00	0.75	0.22	5.75	0.62	0.38	0.75	
20SM6882	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(30.23)	(53.98)	(57.15)	(76.20)	(19.05)	(5.59)	(146.05)	(15.75)	(9.65)	(19.05)	
20SM9872	VEE	9/16	0.312	2.50	1.25	0.53	1.75	2.50	3.13	4.00	1.00	0.34	7.34	0.69	0.50	1.00	
20SM9882	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(44.45)	(63.50)	(79.38)	(101.60)	(25.40)	(8.64)	(186.68)	(17.53)	(12.70)	(25.40)	
20SM12872	VEE	3/4	0.438	3.00	1.50	0.62	2.25	3.44	4.25	10.25	1.12	0.44	9.00	0.88	0.63	1.38	
20SM12882	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(57.15)	(87.38)	(107.95)	(260.35)	(28.45)	(11.18)	(228.60)	(22.35)	(16.00)	(35.05)	See
20SM16872	VEE	1	0.562	4.12	2.06	0.63	2.69	4.38	5.25	10.25	1.62	0.56	11.00	1.25	1.13	1.75	Figure 5
20SM16882	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(68.33)	(111.13)	(133.35)	(260.35)	(41.15)	(14.22)	(279.64)	(31.75)	(28.70)	(44.4 5)	
10SM9872	VEE	9/16	0.359	2.50	1.25	0.53	1.75	2.50	3.38	4.00	1.00	0.34	7.34	0.69	0.50	1.00	
10SM9882	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(44.45)	(63.50)	(85.85)	(101.60)	(25.40)	(8.64)	(186.68)	(17.53)	(12.70)	(25.40)	
10SM12872	VEE	3/4	0.516	3.00	1.50	0.62	2.25	3.44	4.25	10.25	1.12	0.44	9.00	0.88	0.63	1.38	
10SM12882	REG	(19.03)	(13.11)	(76.20)	(38.10)	(15.75)	(57.15)	(87.38)	(107.95)	(260.35)	(28.45)	(11.18)	(228.60)	(22.35)	(16.00)	(35.05)	
10SM16872	VEE	1	0.688	4.12	2.06	0.63	2.69	4.38	5.25	10.25	1.62	0.56	11.00	1.25	1.13	1.75	
10SM16882	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(68.33)	(111.13)	(133.35)	(260.35)	(41.15)	(14.22)	(279.64)	(31.75)	(28.70)	(44.45)	

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.


^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Catalog	Stem	Outside	Orifica					Dim	ensions -	inches	(mm)					Block Thick-	Valve
Number T		Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

3-Way / 2-Stem Manifold

·, .																	
20SM4075	VEE	1/4	0.125	2.00	1.00	0.38	1.69	1.19	3.38	3.00	0.75	0.22	5.69	0.62	0.38	0.75	
20SM4085	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.65)	(42.85)	(30.15)	(85.73)	(76.20)	(19.05)	(5.59)	(144.50)	(15.75)	(9.65)	(19.05)	
20SM6075	VEE	3/8	0.219	2.00	1.00	0.47	1.69	1.19	3.38	3.00	0.75	0.22	5.69	0.62	0.38	0.75	
20SM6085	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(42.85)	(30.15)	(85.73)	(76.20)	(19.05)	(5.59)	(144.50)	(15.75)	(9.65)	(19.05)	
20SM9075	VEE	9/16	0.312	2.50	1.25	0.53	2.56	1.75	5.13	4.00	1.00	0.34	8.13	0.69	0.50	1.00	
20SM9085	REG	(14.29)	(7.92)	(63.50)	(31.75)	(13.46)	(65.07)	(44.45)	(130.18)	(101.60)	(25.40)	(8.64)	(206.5)	(17.53)	(12.70)	(25.40)	
20SM12075	VEE	3/4	0.438	3.00	1.50	0.62	3.25	2.25	6.50	10.25	1.12	0.44	9.75	0.88	0.63	1.38	Soo
20SM12085	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.75)	(82.55)	(57.15)	(165.10)	(260.35)	(28.45)	(11.18)	(247.65)	(22.35)	(16.00)	(35.05)	See Figure 6
20SM16075	VEE	1	0.562	4.12	2.06	0.63	3.75	2.81	7.50	10.25	1.62	0.56	12.18	1.25	1.13	1.75	riguie 0
20SM16085	REG	(25.40)	(14.27)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(190.50)	(260.35)	(41.15)	(14.22)	(309.40)	(31.75)	(28.70)	(44.4 5)	
10SM9075	VEE	9/16	0.359	2.50	1.25	0.53	2.56	1.75	5.13	4.00	1.00	0.34	8.13	0.69	0.50	1.00	
10SM9085	REG	(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(65.07)	(44.45)	(130.18)	(101.60)	(25.40)	(8.64)	(206.5)	(17.53)	(12.70)	(25.40)	
10SM12075	VEE	3/4	0.516	3.00	1.50	0.62	3.25	2.25	6.50	10.25	1.12	0.44	9.75	0.88	0.63	1.38	
10SM12085	REG	(19.03)	(13.11)	(76.20)	(38.10)	(15.75)	(82.55)	(57.15)	(165.10)	(260.35)	(28.45)	(11.18)	(247.65)	(22.35)	(16.00)	(35.05)	
10SM16075		1	0.688	4.12	2.06	0.63	3.75	2.81	7.50	10.25	1.62	0.56	12.18	1.25	1.13	1.75	
10SM16085	REG	(25.40)	(17.48)	(104.65)	(52.32)	(16.00)	(95.25)	(71.37)	(190.50)	(260.35)	(41.15)	(14.22)	(309.40)	(31.75)	(28.70)	(44.45)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0112SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Medium Pressure

QS Series

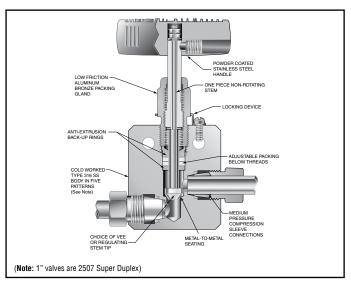
Pressures to 15,000 psi (1034 bar)

Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave Engineers a reputation for reliable efficient product performance. Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, waterblast, research, and oil and gas industries.

Medium Pressure Valve Features:

- Compression Sleeve to 15,000 psi (1034 bar).
- Tubing sizes available from 1/4" to1".
- Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- Anti-galling molybdenum disulfide coated gland nuts.
- Gland nut positioning mark for assembly.
- · Connection weep holes for safety and leak detection.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tip.
- Available in two body patterns.
- 1" valve bodies are 2507 Super Duplex standard

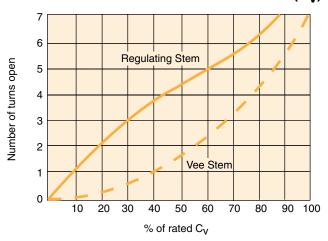
Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, check valves and line filters. The QS Series uses Parker Autoclave Engineers' Quick Set compression sleeve design, providing fast easy make-up and reliable bubble-tight performance in liquid or gas service.


Needle Valves - QS Series

Pressures to 15,000 psi (1034 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	QS 250	0.125 (3.18)	0.31	15,000 (1034)
3/8	QS 375	0.219 (5.56)	0.75	15,000 (1034)
9/16	QS 562	0.359 (9.12)	2.80	15,000 (1034)
3/4	QS 750	0.516 (13.10)	5.20	15,000 (1034)
1	QS 1000	0.688 (17.48)	5.20	15,000 (1034)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Parker Autoclave Engineers tubing

Autoclave Engineers Engineers MAWP PSI @ RT

Generalized Flow Coefficient Curves (C_V)

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. QS Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 15QS4071 4 **15QS** 07 XX Outside Diameter Valve Stem/Seat Body Options Series **Tube Size** Pattern Type TG - PTFE Glass Plating 07 - non-rotating 1 - two-way straight 15QS 4-1/4" GY - Graphite Yarn Vee stem (on-off service) 6-3/8" 2 - two-way angle Packing 9-9/16" 08 - non-rotating 3 - three-way, two on pressure **12**-3/4" See valve options regulating stem (tapered tip 4 - three-way, one on pressure for ratings 16-1" for regulating and shutoff) 5 - three-way, two stem 87 - Vee stem with replaceable seat manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box are available for service from -100°F (-73°C) to 650°F (343°C) by adding the following suffixes to catalog order number.†

TG standard valve with PTFE glass packing to 600°F (316°C). GY standard valve with graphite braided yarn packing to 650°F (343°C). B standard valve with cryogenic trim materials and PTFE packing to -100°F (-73°C).

†Parker Autoclave Engineers does not recommend compression sleeve connections below -100°F (-73°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R15QS4071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies.

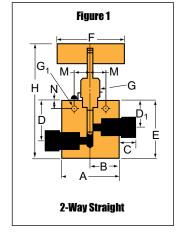
Catalog	Stam	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valve
Number	Type		Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

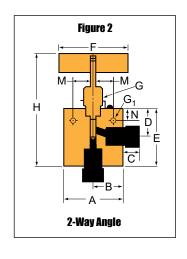
2-Way Straight

15QS4071	VEE	1/4	0.125	2.00	1.00	0.38	1.62	1.19	2.00	3.00	0.75	0.22	4.69	0.62	0.38	0.75	
15QS4081	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.53)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(119.13)	(15.75)	(9.65)	(19.05)	
15QS6071	VEE	3/8	0.219	2.00	1.00	0.47	1.62	1.19	2.00	3.00	0.75	0.22	4.63	0.62	0.38	0.81	
15QS6081	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(41.15)	(30.23)	(50.80)	(76.20)	(19.05)	(5.59)	(117.60)	(15.75)	(9.65)	(20.57)	
15QS9071	VEE	9/16	0.359	3.00	1.50	0.53	2.38	1.75	3.00	4.00	1.00	0.34	6.05	0.69	0.50	1.25	See
15QS9081	REG	(14.29)	(9.12)	(76.20)	(38.10)	(13.46)	(60.45)	(44.45)	(76.20)	(101.60)	(25.40)	(8.64)	(153.67)	(17.53)	(12.70)	(31.75)	Figure 1
15QS12071	VEE	3/4	0.516	4.12	2.06	0.62	3.00	2.25	3.88	10.25	1.12	0.44	7.13	0.88	0.63	1.50	
15QS12081	REG	(19.05)	(13.11)	(104.65)	(52.32)	(15.75)	(76.20)	(57.15)	(98.43)	(260.35)	(28.45)	(11.18)	(180.98)	(22.35)	(16.00)	(38.10)	
15QS16071	VEE	1	0.688	4.75	2.38	1.19	3.75	2.63	4.75	10.25	1.12	0.44	8.00	0.88	0.63	2.00	
15QS16081	REG	(25.40)	(17.48)	(120.65)	(60.33)	(30.18)	(95.25)	(66.68)	(120.65)	(260.35)	(28.45)	(11.18)	(203.20)	(22.35)	(16.00)	(50.80)	

Note: 1" valve bodies are 2507 Super Duplex

2-Way Angle


z muj n	3-0															
15QS4072	VEE	1/4	0.125	2.00	1.00	0.38	1.19	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
15QS4082	REG	(6.35)	(3.18)	(50.80)	(25.40)	(9.53)	(30.23)	(61.98)	(76.20)	(19.05)	(5.59)	(122.17)	(15.75)	(9.65)	(19.05)	
15QS6072	VEE	3/8	0.219	2.00	1.00	0.47	1.20	2.56	3.00	0.75	0.22	4.93	0.62	0.38	0.81	
15QS6082	REG	(9.53)	(5.56)	(50.80)	(25.40)	(11.94)	(30.48)	(65.02)	(76.20)	(19.05)	(5.59)	(125.22)	(15.75)	(9.65)	(20.62)	
15QS9072	VEE	9/16	0.359	3.00	1.50	0.53	1.69	3.50	4.00	1.00	0.36	6.55	0.69	0.50	1.25	See
15QS9082	REG	(14.29)	(9.12)	(76.20)	(38.10)	(13.46)	(42.88)	(88.90)	(101.60)	(25.40)	(9.14)	(166.37)	(17.53)	(12.70)	(31.75)	Figure 2
15QS12072	VEE	3/4	0.516	4.12	2.06	0.62	2.19	4.63	10.25	1.12	0.44	7.88	0.88	0.63	1.50	
15QS12082	REG	(19.05)	(13.11)	(104.65)	(52.32)	(15.75)	(55.58)	(117.48)	(260.35)	(28.45)	(11.18)	(200.15)	(22.35)	(16.00)	(38.10)	
15QS16072	VEE	1	0.688	4.75	2.38	1.19	3.75	5.38	10.25	1.12	0.44	8.63	0.88	0.63	2.00	
15QS16082	REG	(25.40)	(17.48)	(120.65)	(60.33)	(30.18)	(95.25)	(136.53)	(260.35)	(28.45)	(11.18)	(219.25)	(22.35)	(16.00)	(50.80)	


Note: 1" valve bodies are 2507 Super Duplex

- ${\it G}$ Packing gland mounting hole drill size ${\it G}_1$ Bracket mounting hole size
- Panel mounting drill size: 0.22" all valves.
- * H Dimension is with stem in closed position.
- **1/8" straight and 3-Way/2 on pressure valves have offset tube connections

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, asafety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-1246BE

January2013

Autoclave Engineers

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Negle Valves

High Pressure

30SC, 43SC, 30VM, 40VM, 60VM, 100VM & 150V Series

Pressures to 150,000 psi (10342 bar)

Since 1945, Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave a reputation for reliable and efficient product performance. Parker Autoclave Engineers has long been established as the worldwide leader in high pressure fluid handling components for the chemical/petrochemical, research, oil and gas, waterjet, and waterblast industries.

Needle Valves - High Pressure

High Pressure Valve Features

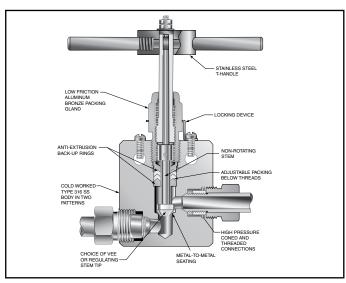
- Tubing sizes from 1/4" to 1".
- Non-rotating stem prevents stem/seat galling.
- Rising stem/barstock body design.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- For dependable stem and body sealing 30SC, 43SC and 30VM valves are furnished with PTFE encapsulated packing; the 40VM and 60VM valves feature nylon/leather packing below threads.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- · Choice of Vee or Regulating stem tips.

Series 100VM: Pressures to 100,000 psi (6895 bar) features:

- Cold-worked type 316 or 15-5PH stainless steel body with aluminum bronze packing gland and non-rotating stem.
- Nylon and leather packing below stem threads.

Series 150V: Pressures to 150,000 psi (10342 bar) features:

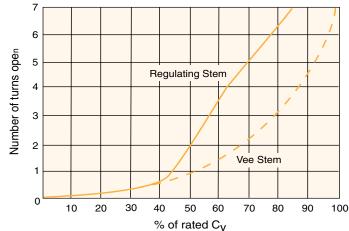
- Cylindrical body of high strength 15-5PH stainless steel with stainless steel packing gland. Tool steel nonrotating stem with replaceable seat of nickel maraging steel. Stem must be actuated with torque wrench (refer to Tools, Installation, Operation and Maintenance section).
- Wedge-type PTFE and leather packing below stem threads with beryllium-copper Autoclave Anti-Extrusion Back up Rings.
- Vee stem tip only


Parker Autoclave Engineers valves are complemented by a complete line of high pressure fittings and tubing. The high pressure series uses Parker Autoclave Engineers' coned-and-threaded connections for dependable performance in gas or liquid service.

Pressures to 43,000 psi (2965 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
Series 30SC 1 Series 43SC	F1000C43	.438 (11.12)	2.6	30,000 (2068)
1	F1000C43	.438 (11.12)	2.6	43,000 (2965)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 30SC Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 30SC16071 30SC 16 XX 07 **Outside Diameter** Stem/Seat Valve **Body** Options Series **Tube Size** Type Pattern For extreme 1 - two-way straight 30SC 16-1" 07 - non-rotating temperature and Vee stem (on-off service) 43SC 2 - two-way angle other options. 08 - non-rotating see Valve Options. regulating stem (tapered tip for regulating and shutoff) 87 - Vee stem with replaceable 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

- TG standard valve with PTFE glass packing to 600°F (316°C).
- GY standard valve with graphite braided yarn packing to 800°F (427°C). 8.000 psi (569 bar) max.
- HT extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).
- **B** standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).
- LT extended stuffing box valve with PTFE packing & Cryogenic trim materials to -423°F (-252°C).
- K anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R30SC16071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

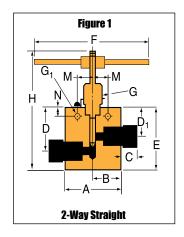
digit part number found in the valve drawing or contact your Sales Representative for information.

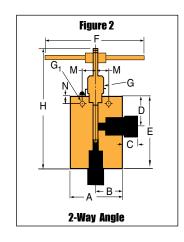
Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

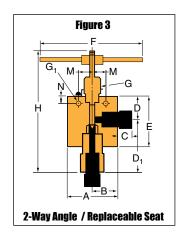
Catalog	Stem	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

2-Way Straight

30SC16071	VEE	1"	0.438	4.13	2.06	0.72	3.50	2.75	4.44	10.25	1.62	0.56	8.42	1.25	1.12	1.75	
30SC16081	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(88.90)	(69.85)	(112.77)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(44.45)	See
43SC16071	VEE	1"	0.438	4.88	2.44	0.72	3.50	2.75	4.44	10.25	1.62	0.56	8.42	1.25	1.12	2.25	Figure 1
43SC16081	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(88.90)	(69.85)	(112.77)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(57.15)	


2-Way Angle

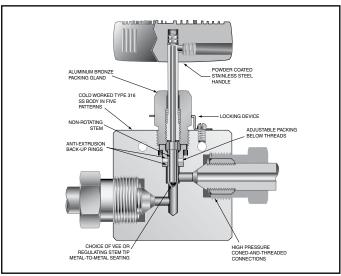

30SC16072	VEE	1"	0.438	4.13	2.06	0.72	2.75	5.12	10.25	1.62	0.56	9.35	1.25	1.12	1.75	
30SC16082	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(69.85)	(130.04)	(260.35)	(41.14)	(14.22)	(237.49)	(31.75)	(28.44)	(44.45)	See
43SC16072	VEE	1"	0.438	4.88	2.44	0.72	2.75	5.12	10.25	1.62	0.56	9.35	1.25	1.12	2.25	Figure 2
43SC16082	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(69.85)	(130.04)	(260.35)	(41.14)	(14.22)	(237.49)	(31.75)	(28.44)	(57.15)	


2-Way Angle/Replaceable Seat

30SC16872	VEE	1"	0.438	4.13	2.06	0.72	2.75	4.31	5.24	10.25	1.62	0.56	10.56	1.25	1.12	1.75	
30SC16882	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(71.37)	(109.47)	(133.35)	(260.35)	(41.14)	(14.22)	(268.22)	(31.75)	(28.44)	(44.45)	See
43SC16872	VEE	1"	0.438	4.88	2.44	0.72	2.75	4.31	5.24	10.25	1.62	0.56	10.56	1.25	1.12	2.25	Figure 3
43SC16882	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(71.37)	(109.47)	(133.35)	(260.35)	(41.14)	(14.22)	(268.22)	(31.75)	(28.44)	(57.15)	

G - Packing gland mounting hole drill size

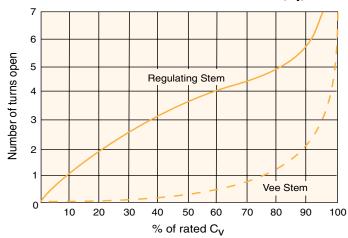
G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.


^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Pressures to 30,000 psi (2068 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	F250C	0.094 (2.39)	0.12	30,000 (2068)
3/8	F375C	0.125 (3.18)	0.23	30,000 (2068)
9/16	F562C	0.125 (3.18)	0.33	30,000 (2068)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating quide in Technical Information section.

To ensure proper fit use Autoclave tubing

Autoclave Engineers 30VM4072 MAVVP 30,000 PSI @ RT 155225-229 HT.-A12082 INLET V.C.1.2

Generalized Flow Coefficient Curves (C_v)

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 30VM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 30VM4071 **30VM** XX 4 07 **Outside Diameter** Body Stem/Seat Valve **Options Tube Size** Type Pattern Series For extreme 4-1/4" 1 - two-way straight 07 - non-rotating temperature and other 6-3/8" Vee stem (on-off service) 2 - two-way angle options, see Valve 9-9/16" 08 - non-rotating 3 - three-way, two on pressure Options. regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two-stem 87 - Vee stem with replaceable manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (644°C) by adding the following suffixes to catalog order number.

- **TG** standard valve with PTFE glass packing to 600°F (316°C).
- GY standard valve with graphite braided yarn packing to 800°F (427°C).
- **HT** extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).
- **B** standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).
- LT extended stuffing box valve with PTFE packing & Cryogenic trim materials to -423°F (-252°C).
- K anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

> number for proper repair kit. (Example: R30VM4071)

Valve Bodies: Valve bodies are available. Order using the eight (8)

> digit part number found in the valve drawing or contact your Sales Representative for information.

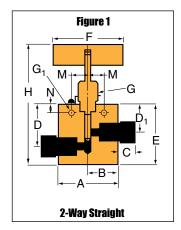
Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

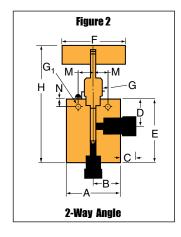
Catalog	Stem	Outside	Orifice					Dim	ensions ·	- inches	(mm)					Block	Value
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	Thick- ness	Valve Pattern
2-Way S	Straig	jht															
30VM4071	VEE	1/4	0.094	2.00	1.00	0.50	1.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
30VM4081	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.10)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
30VM6071	VEE	3/8	0.125	2.00	1.00	0.53	1.50	1.12	2.00	3.00	1.00	0.22	4.68	0.69	0.38	1.00	See
30VM6081	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(38.10)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(118.87)	(17.53)	(9.65)	(25.40)	Figure 1
30VM9071	VEE	9/16	0.125	2.62	1.31	0.81	1.56	1.12	2.44	3.00	1.00	0.28	5.06	0.69	0.38	1.50	
30VM9081	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(39.62)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	

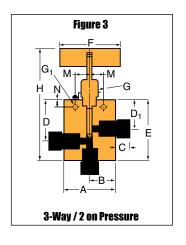
2-Way Angle

30VM4072	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
30VM4082	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
30VM6072	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	See
30VM6082	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	Figure 2
30VM9072	VEE	9/16	0.125	2.62	1.31	0.81	1.12	2.44	3.00	1.00	0.28	5.06	0.69	0.38	1.50	
30VM9082	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	

3-Way / 2 on Pressure


30VM4073	VEE	4/4	0.004	0.00	4.00	0.50	4.50	4.40	0.40	0.00	4.00	0.00	474	0.00	0.00	4.00	
301114073	VEE	1/4	0.094	2.00	1.00	0.50	1.50	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	
30VM4083	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.10)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	
30VM6073	VEE	3/8	0.125	2.00	1.00	0.53	1.50	1.12	2.50	3.00	1.00	0.22	5.12	0.69	0.38	1.00	See
30VM6083	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(38.10)	(28.45)	(63.50)	(76.20)	(25.40)	(5.59)	(130.05)	(17.53)	(9.65)	(25.40)	Figure 3
30VM9073	VEE	9/16	0.125	2.62	1.31	0.81	1.56	1.12	2.88	3.00	1.00	0.28	5.49	0.69	0.38	1.50	
30VM9083	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(39.62)	(28.45)	(73.15)	(76.20)	(25.40)	(7.11)	(139.45)	(17.53)	(9.65)	(38.10)	


G - Packing gland mounting hole drill size


G₁ - Bracket mounting hole size

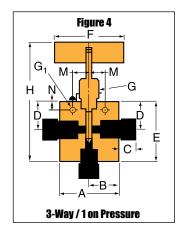
Panel mounting drill size: 0.22" all valves.

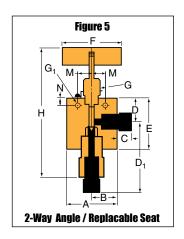
* H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

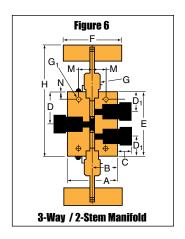
Catalog	Stem	Outside	Orifice					Dim	ensions ·	inches	(mm)					Block Thick-	Valve
• •	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

3-Way / 1 on Pressure

30VM4074	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
30VM4084	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
30VM6074	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	See
30VM6084	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	Figure 4
30VM9074	VEE	9/16	0.125	2.62	1.31	0.81	1.12	2.44	3.00	1.00	0.28	5.12	0.69	0.38	1.50	
30VM9084	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(130.05)	(17.53)	(9.65)	(38.10)	


2-Way Angle / Replaceable Seat


30VM4872	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.06	2.38	3.00	1.00	0.22	5.80	0.69	0.38	1.00	
30VM4882	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(52.32)	(60.45)	(76.20)	(25.40)	(5.59)	(147.32)	(17.53)	(9.65)	(25.40)	
30VM6872	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.31	2.38	3.00	1.00	0.22	6.05	0.69	0.38	1.00	See
30VM6882	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(58.67)	(60.45)	(76.20)	(25.40)	(5.59)	(153.67)	(17.53)	(9.65)	(25.40)	Figure 5
30VM9872	VEE	9/16	0.125	2.62	1.31	0.81	1.19	2.62	2.44	3.00	1.00	0.28	6.45	0.69	0.38	1.50	
30VM9882	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(30.23)	(66.55)	(61.98)	(76.20)	(25.40)	(7.11)	(163.83)	(17.53)	(9.65)	(38.10)	


3-Way / 2-Stem Manifold

·																	
30VM4075	VEE	1/4	0.094	2.00	1.00	0.50	1.53	1.12	3.06	3.00	1.00	0.22	5.68	0.69	0.38	1.00	
30VM4085	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.86)	(28.45)	(77.72)	(76.20)	(25.40)	(5.59)	(144.27)	(17.53)	(9.65)	(25.40)	
30VM6075	VEE	3/8	0.125	2.00	1.00	0.53	1.62	1.12	3.25	3.00	1.00	0.22	5.87	0.69	0.38	1.00	See
30VM6085	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(41.15)	(28.45)	(82.55)	(76.20)	(25.40)	(5.59)	(149.10)	(17.53)	(9.65)	(25.40)	Figure 6
30VM9075	VEE	9/16	0.125	2.62	1.31	0.81	1.88	1.12	3.75	3.00	1.00	0.28	6.37	0.69	0.38	1.50	
30VM9085	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(47.75)	(28.45)	(95.25)	(76.20)	(25.40)	(7.11)	(161.80)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Noodle Valves - 40VM Series

Pressures to 40,000 psi (2760 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
9/16	F562C40	0.109 (2.77)	0.28	40,000 (2760)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

ALUMNUM BRONZE PACKING GLAND COLD WORKED TYPE 316 SS BODY IN TWO PATTERNS NON-ROTATING STEM ANTI-EXTRUSION BACK-UP RINGS CHOICE OF VEE OR REQULATING STEM TIP METAL-TO-METAL SEATING

To ensure proper fit use Autoclave tubing

Generalized Flow Coefficient Curves (C_v) 6 Number of turns open 5 4 Regulating Stem 3 Vee Stem 10 20 50 60 80 90 100 % of rated C_V

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options Section or contact your Sales Representative. The 40VM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 40VM9071 **40VM** 9 07 XX Stem/Seat Outside Diameter Valve Body Options **Tube Size** Series Type Pattern For extreme 9-9/16" 07 - non-rotating 1 - two-way straight temperature and other Vee stem (on-off service) 2 - two-way angle options, see Valve 08 - non-rotating 5 - three-way, two-stem Options. regulating stem (tapered tip manifold valve for regulating and shutoff)

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG - standard valve with PTFE glass packing to 600°F (316°C). See note below.

GY - standard valve with graphite braided yarn packing to 800°F (427°C).

HT - extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B - standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

LT - extended stuffing box valve with PTFE packing & Cryogenic trim materials to -423°F (-252°C).

K - anti-vibration collet and gland assembly.

Note: 40VM and 60VM valves supplied with Peak/PTFE Glass/Peek

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R40VM9071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found in the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Stem	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Value
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Valve Pattern

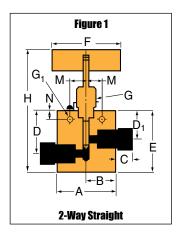
2-Way Straight

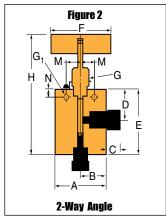
40VM9071	VEE	9/16	0.109	2.62	1.31	0.72	1.75	1.31	2.50	3.00	1.00	0.28	5.06	0.69	0.38	1.50	See
40VM9081	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(44.45)	(33.27)	(63.50)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	Figure 1

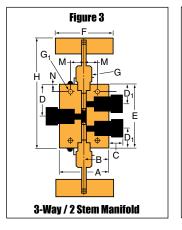
2-Way Angle

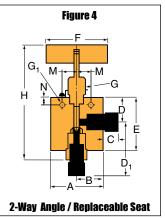
40VM9072	VEE	9/16	0.109	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.37	0.69	0.38	1.50	See
40VM9082	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(136.40)	(17.53)	(9.65)	(38.10)	Figure 2

3-Way / 2 Stem Manifold


40VM907	VEE	9/16	0.109	2.62	1.31	0.72	2.06	1.31	4.12	3.00	1.00	0.28	6.59	0.69	0.38	1.50	See
40VM908	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(52.32)	(33.27)	(104.65)	(76.20)	(25.40)	(7.11)	(167.39)	(17.53)	(9.65)	(38.10)	Figure 3


2-Way Angle / Replaceable Seat


40VM9872	VEE	9/16	0.109	2.62	1.31	0.72	1.31	2.68	2.62	3.00	1.00	0.28	6.90	0.69	0.38	1.50	See
40VM9882	REG	(14.29)	(2.77)	(66.55)	(33.27)	(18.29)	(33.27)	(68.07)	(66.55)	(76.20)	(25.40)	(7.11)	(175.26)	(17.53)	(9.65)	(38.10)	Figure 4

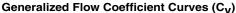

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

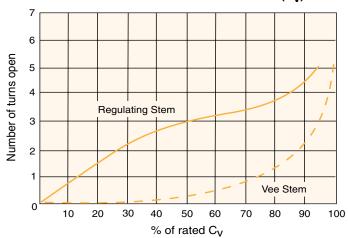
* H Dimension is with stem in closed position. All dimensions for reference only and subject to change.


Needle Valves - 60VM Series

Pressures to 60.000 psi (4137 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	F250C	0.062 (1.57)	0.08	60,000 (4137)
3/8	F375C	0.062 (1.57)	0.09	60,000 (4137)
9/16	F562C	0.078 (1.98)	0.14	60,000 (4137)


Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 60VM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 60VM4071 **60VM** 07 XX Valve **Outside Diameter** Stem/Seat Body **Options Tube Size** Type Pattern Series For extreme 4-1/4" 07 - non-rotating 1 - two-way straight temperature and other 6-3/8" Vee stem (on-off service) 2 - two-way angle options, see Valve 9-9/16" 08 - non-rotating 3 - three-way, two on pressure Options. regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two-stem 87 - Vee stem with replaceable manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG - standard valve with PTFE glass packing to 600°F (316°C). See note below.

GY - standard valve with graphite braided yarn packing to 800°F (427°C).

HT - extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B - standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

LT - extended stuffing box valve with PTFE packing & Cryogenic trim materials to -423°F (-252°C).

K - anti-vibration collet and gland assembly.

Note: 40VM and 60VM valves supplied with Peak/PTFE Glass/Peek

60VM9081 REG (14.29) (1.98) (66.55) (33.27)

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R60VM4071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

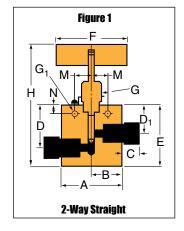
digit part number found in the valve drawing or contact your Sales Representative for information.

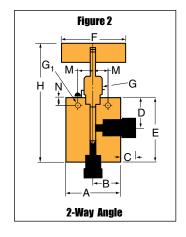
Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

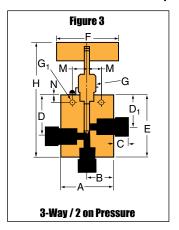
Catalog	Stem	Outside	Orifice					Dime	ensions ·	inches	(mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Pattern
2-Way S	traig	ht															
60VM4071	VEE	1/4	0.062	2.00	1.00	0.50	1.69	1.31	2.12	3.00	1.00	0.22	4.75	0.69	0.38	1.00	
60VM4081	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(42.93)	(33.27)	(53.85)	(76.20)	(25.40)	(5.59)	(120.65)	(17.53)	(9.65)	(25.40)	
60VM6071	VEE	3/8	0.062	2.00	1.00	0.53	1.69	1.31	2.25	3.00	1.00	0.22	4.87	0.69	0.38	1.00	See
60VM6081	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(42.93)	(33.27)	(57.15)	(76.20)	(25.40)	(5.59)	(123.70)	(17.53)	(9.65)	(25.40)	Figure 1
60VM9071	VEE	9/16	0.078	2.62	1.31	0.72	1.75	1.31	2.50	3.00	1.00	0.28	5.13	0.69	0.38	1.50	

2-Way Angle

,																
60VM4072	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.38	3.00	1.00	0.22	5.00	0.69	0.38	1.00	
60VM4082	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(127.00)	(17.53)	(9.65)	(25.40)	
60VM6072	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.62	3.00	1.00	0.22	5.25	0.69	0.38	1.00	See
60VM6082	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.55)	(76.20)	(25.40)	(5.59)	(133.35)	(17.53)	(9.65)	(25.40)	Figure 2
60VM9072	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.44	0.69	0.38	1.50	
60VM9082	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(138.18)	(17.53)	(9.65)	(38.10)	


(18.29) (45.45) (33.27) (63.50) (76.20) (25.40) (7.11) (130.30) (17.53)


3-Way / 2 on Pressure


60VM4073	VEE	1/4	0.062	2.00	1.00	0.50	1.69	1.31	2.38	3.00	1.00	0.22	4.75	0.69	0.38	1.00	
60VM4083	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(42.93)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(120.65)	(17.53)	(9.65)	(25.40)	
60VM6073	VEE	3/8	0.062	2.00	1.00	0.53	1.69	1.31	2.75	3.00	1.00	0.22	4.87	0.69	0.38	1.00	See
60VM6083	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(42.93)	(33.27)	(68.86)	(76.20)	(25.40)	(5.59)	(123.70)	(17.53)	(9.65)	(25.40)	Figure 3
60VM9073	VEE	9/16	0.078	2.62	1.31	0.72	1.75	1.31	3.03	3.00	1.00	0.28	5.13	0.69	0.38	1.50	
60VM9083	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(45.45)	(33.27)	(76.96)	(76.20)	(25.40)	(7.11)	(130.30)	(17.53)	(9.65)	(38.10)	

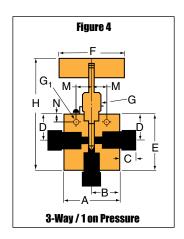
G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

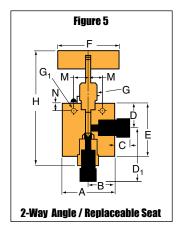
* H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

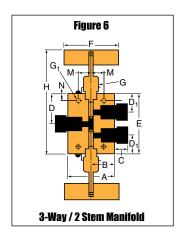
Catalog	Stem	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valvo
Number	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Valve Pattern

3-Way / 1 on Pressure

60VM4074	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.38	3.00	1.00	0.22	5.00	0.69	0.38	1.00	
60VM4084	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(127.00)	(17.53)	(9.65)	(25.40)	
60VM6074	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.62	3.00	1.00	0.22	5.25	0.69	0.38	1.00	See
60VM6084	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.55)	(76.20)	(25.40)	(5.59)	(133.35)	(17.53)	(9.65)	(25.40)	Figure 4
60VM9074	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.44	0.69	0.38	1.50	
60VM9084	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(138.18)	(17.53)	(9.65)	(38.10)	


2-Way Angle / Replaceable Seat


60VM4872	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.12	2.62	3.00	1.00	0.22	6.28	0.69	0.38	1.00	
60VM4882	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(53.85)	(66.55)	(76.20)	(25.40)	(5.59)	(159.51)	(17.53)	(9.65)	(25.40)	
60VM6872	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.36	2.62	3.00	1.00	0.22	6.52	0.69	0.38	1.00	See
60VM6882	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(59.94)	(66.55)	(76.20)	(25.40)	(5.59)	(165.60)	(17.53)	(9.65)	(25.40)	Figure 5
60VM9872	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.68	2.62	3.00	1.00	0.28	6.90	0.69	0.38	1.50	
60VM9882	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(68.07)	(66.55)	(76.20)	(25.40)	(7.11)	(175.26)	(17.53)	(9.65)	(38.10)	

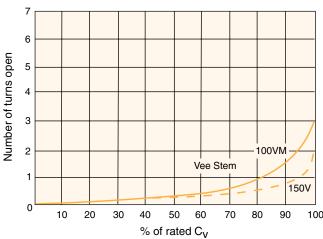

3-Way / 2-Stem Manifold

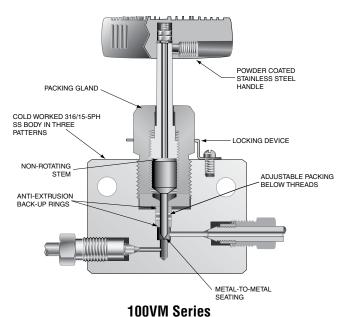
60VM4075	VEE	1/4	0.062	2.00	1.00	0.50	1.72	1.31	3.44	3.00	1.00	0.22	6.07	0.69	0.38	1.00	
60VM4085	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(43.69)	(33.27)	(87.38)	(76.20)	(25.40)	(5.59)	(154.18)	(17.53)	(9.65)	(25.40)	
60VM6075	VEE	3/8	0.062	2.00	1.00	0.53	1.88	1.31	3.75	3.00	1.00	0.22	6.37	0.69	0.38	1.00	See
60VM6085	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(47.75)	(33.27)	(95.25)	(76.20)	(25.40)	(5.59)	(161.80)	(17.53)	(9.65)	(25.40)	Figure 6
60VM9075	VEE	9/16	0.078	2.62	1.31	0.72	2.06	1.31	4.12	3.00	1.00	0.28	6.37	0.69	0.38	1.50	
60VM9085	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(52.32)	(33.27)	(104.65)	(76.20)	(25.40)	(7.11)	(161.80)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Needle Valves - 100VM & 150V Series


Pressures to 150,000 psi (10350 bar)

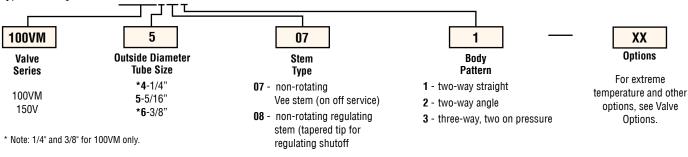

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
Series 100VM 1/4, 5/16, 3/8	F312C150	0.062 (1.57)	.09	100,000 (6895)
Series 150V 5/16	F312C150	0.062 (1.57)	.06	150,000 (10342)

Notes

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.


Generalized Flow Coefficient Curves (C_V)

Notes: Torque wrench required to operate valves.


150V Series

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 100V Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 100VM5071

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C), and to 230°F (110°C) with nylon-leather packing.

K - anti-vibration collet and gland assembly.

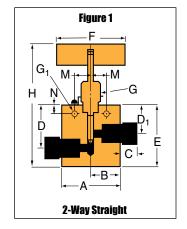
For other packing options consult the factory.

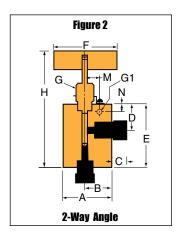
Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R100VM15071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found in the valve drawing or contact your Sales Representative for information.


Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Stem	Outside	Orifice					Dim	ensions	- inches	(mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	H*	M	N	ness	Pattern
2-Way	Stra	ight															
100VM4071 100VM5071	VEE	1/4" (6.35) 5/16" (7.93)	0.062	3.00	1.50	0.52	1.75	1.44	2.25	4.00	1.12	0.34	5.32	1.12	0.50	1.38	See
100VM5071	VEE	3/8" (9.53)	(1.57)	(76.20)	(38.10)	(13.21)	(44.45)	(36.58)	(57.15)	(101.60)	(28.45)	(8.64)	(135.13)	(28.45)	(12.70)	(35.05)	Figure 1
2-Way	Ang	le															
100VM4072 100VM5072		1/4" (6.35)	0.062	2.25	1.50	0.52	1.44		3.00	4.00	1.12	0.34	6.05	0.94	0.50	1.38	See
100VM5072		5/16" (7.93) 3/8" (9.53)	(1.57)	(57.15)	(38.10)	(13.21)	(36.58)		(76.20)	(101.60)	(28.45)	(8.64)	(153.67)	(23.88)	(12.70)	(35.05)	Figure 2

G - Packing gland mounting hole drill size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. For prompt service, Parker Autoclave Engineers stock select products. Consult factory.

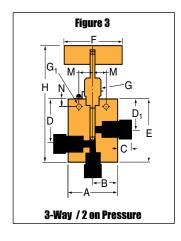
^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

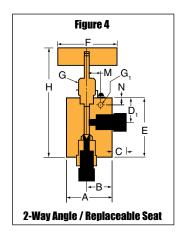
Catalog	Stem	Outside	Orifice					Dime	ensions -	inches	(mm)					Block Thick-	Valve
L	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

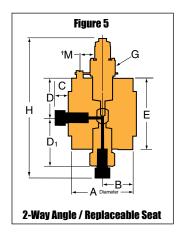
3-Way / 2 On Pressure

o may, z c		4.0														
100VM4073 100VM5073 VEE	1/4" (6.35) 5/16" (7.93)		3.00	1.50	0.52	1.75	1.44	3.25	4.00	1.12	0.34	6.31	1.12	0.50	1.38	See
100VM6073	3/8" (9.53)		(76.20)	(38.10)	(13.21)	(44.45)	(36.58)	(82.55)	(101.60)	(28.45)	(8.64)	(160.27)	(28.45)	(12.70)	(35.05)	Figure 3

2-Way Angle/Replaceable Seat


100VM4872 1/4" (6.35) 0.	062 2.25	1.50	0.52	1.44	3.00	4.00	1.12	0.34	7.57	0.94	0.50	1.38	See
10011110070 0/0" (0 50) /1	.57) (57.15)	(38.10)	(13.21)	(36.58)	(76.20)	(101.60)	(28.45)	(8.64)	(192.30)	(23.88)	(12.70)	(35.05)	Figure 4


2-Way Angle / Replaceable Seat


150V5072	VEE	5/16	0.062	3.75	1.88	.052	2.25	2.63	4.00	1.650	7.12	1.25 [†]		See]
		(7 93)	(1.57)	(95.25)	(47 63)	(13.21)	(57 15)	(66 80)	(101 60)	(41 91)	(180.85)	(31 75)		Figure 5	l

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. See mounting note below for 150V series.

For prompt service, Parker Autoclave Engineers stock select products. Consult factory.

† (2) 1/4"-20 mounting holes 180° apart and (1) locking device screw 90° apart

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0113SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Meelle Valves

Pine Valves

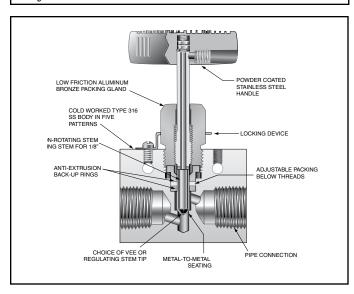
P Series

Pressures to 15,000 psi (1034 bar)

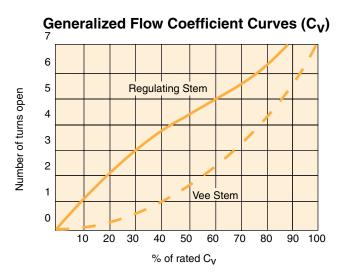
Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave Engineers a reputation for reliable efficient product performance. Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, research, and oil and gas industries.

- P Series valve design provides in-line pipe connections for 1/4" to 1" pipe sizes.
 1/8 connections offset.
- Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling (1/8" NPT rotating stem design).
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tips.
- Operating temperature range from -423°F (-252°C) to 400°F (204°C).

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, check valves and line filters.

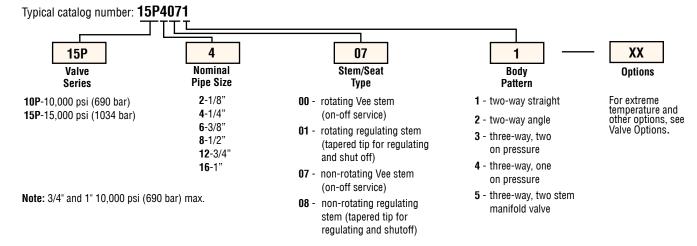


Pressures to 15,000 psi (1034 bar)


Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/8	Pipe	0.078 (1.98)	0.11	15,000 (1034)
1/4	Pipe	0.203 (5.16)	0.63	15,000 (1034)
3/8	Pipe	0.219 (5.56)	0.75	15,000 (1034)
1/2	Pipe	0.312 (7.92)	1.30	15,000 (1034)
3/4	Pipe	0.438 (11.13)	2.50	10,000 (690)
1	Pipe	0.562 (14.27)	4.40	10,000 (690)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.



Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative.

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box is available for service from 0°F (-17.8°C) to 650°F (343°C)

by adding the following suffixes to catalog order number. † TG standard valve with PTFE glass packing to 600°F (316°C). GY standard valve with graphite braided yarn packing to 650°F (343°C). **B** standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

LT extended stuffing box valve with PTFE packing and cryogenic trim

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit.

(Example: R15P4071 or R10P12071)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

materials	to -42	:3°F (-	252°C).	+	•	·	, ,	nnections be o	perated betwe	een -423°F (-2	?52°C) and 40	0°F (204°C).	For additional	l valve options	, contact you	r Sales Repre:	entative.
0-1-1		D	0.:					Dime	nsions -	inches (mm)					Block	Valve
	Stem Type		Orifice Diameter	_	В	С	D	D ₁	E	F	G	G ₁	Н	М	N	Thick- ness	Pattern

2_Way Strainht

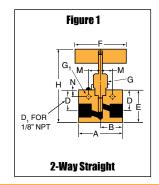
z-way S	craig	M														
15P2001	VEE	1/8	0.078	1.50	0.75	0.56	0.82	1.25	1.75	0.56	0.16	2.53	0.45	0.20	0.63	
15P2011	REG	(3.18)	(1.98)	(38.10)	(19.05)	(14.22)	(20.62)	(31.75)	(44.45)	(14.22)	(4.06)	(64.26)	(11.43)	(5.16)	(15.88)	
15P4071	VEE	1/4	0.203	2.00	1.00	1.41		2.00	3.00	0.75	0.22	4.63	0.62	0.38	0.75	
15P4081	REG	(6.35)	(5.16)	(50.80)	(25.40)	(35.81)		(50.80)	(76.20)	(19.05)	(5.59)	(117.60)	(15.75)	(9.65)	(19.05)	
15P6071	VEE	3/8	0.219	2.50	1.25	1.41		2.00	3.00	0.75	0.22	4.63	0.62	0.38	1.00	
15P6081	REG	(9.53)	(5.56)	(63.50)	(31.75)	(35.81)		(50.80)	(76.20)	(19.05)	(5.59)	(117.60)	(15.75)	(9.65)	(25.4)	See
15P8071	VEE	1/2	0.312	3.00	1.50	2.06		2.88	4.00	1.00	0.34	5.93	0.69	0.50	1.38	Figure 1
15P8081	REG	(12.70)	(7.92)	(76.20)	(38.10)	(52.32)		(73.15)	(101.60)	(25.40)	(8.64)	(150.62)	(17.53)	(12.70)	(35.05)	
10P12071	VEE	3/4	0.437	3.50	1.75	2.63		3.75	10.25	1.12	0.44	7.00	0.88	0.63	1.75	
10P12081	REG	(19.05)	(11.10)	(88.90)	(44.45)	(66.80)		(95.25)	(260.35)	(28.45)	(11.18)	(177.80)	(22.35)	(16.00)	(44.45)	
10P16071		1	0.562	4.12	2.06	3.31		4.62	10.25	1.62	0.56	9.00	1.25	1.13	1.75	
10P16081	REG	(25.40)	(14.27)	(104.65)	(52.32)	(84.07)		(117.35)	(260.35)	(41.15)	(14.22)	(228.60)	(31.75)	(28.70	(44.45)	

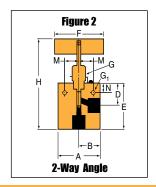
2-Way Angle

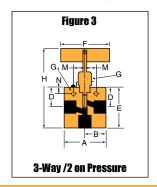
15P2002	VEE	1/8	0.078	1.50	0.75	0.56	1.38	1.75	0.56	0.16	2.66	0.45	0.20	0.63	
15P2012	REG	(3.18)	(1.98)	(38.10)	(19.05)	(14.22)	(34.93)	(44.45)	(14.22)	(4.06)	(67.56)	(11.43)	(5.16)	(15.88)	
15P4072	VEE	1/4	0.203	2.00	1.00	1.41	2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
15P4082	REG	(6.35)	(5.16)	(50.80)	(25.40)	(35.81)	(61.98)	(76.20)	(19.05)	(5.59)	(122.17)	(15.75)	(9.65)	(19.05)	
15P6072	VEE	3/8	0.219	2.50	1.25	1.41	2.44	3.00	0.75	0.22	4.81	0.62	0.38	1.00	
15P6082	REG	(9.53)	(5.56)	(63.50)	(31.75)	(35.81)	(61.98)	(76.20)	(19.05)	(5.59)	(122.17)	(15.75)	(9.65)	(25.40)	See
15P8072	VEE	1/2	0.312	3.00	1.50	2.06	3.38	4.00	1.00	0.34	6.43	0.69	0.50	1.38	Figure 2
15P8082	REG	(12.70)	(7.92)	(76.20)	(38.10)	(52.32)	(85.85)	(101.60)	(25.40)	(8.64)	(163.32)	(17.53)	(12.70)	(35.05)	
10P12072	VEE	3/4	0.437	3.50	1.75	2.63	4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.75	
10P12082	REG	(19.05)	(11.10)	(88.90)	(44.45)	(66.80)	(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(44.45)	
10P16072	VEE	1	0.562	4.12	2.06	3.31	5.12	10.25	1.62	0.56	9.00	1.25	1.13	1.75	
10P16082	REG	(25.40)	(14.27)	(104.65)	(52.32)	(84.07)	(130.05)	(260.35)	(41.15)	(14.22)	(228.60)	(31.75)	(28.70	(44.45)	

3-Way / 2 on Pressure

VEE	1/4	0.203	2.00	1.00		1.41		2.62	3.00	0.75	0.22	5.00	0.62	0.38	0.75	
REG	(6.35)	(5.16)	(50.80)	(25.40)		(35.71)		(66.55)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(19.05)	
VEE	3/8	0.219	2.50	1.25		1.41		2.62	3.00	0.75	0.22	5.00	0.62	0.38	1.00	
REG	(9.53)	(5.56)	(63.50)	(31.75)		(35.71)		(66.55)	(76.20)	(19.05)	(5.59)	(127.00)	(15.75)	(9.65)	(25.40)	
VEE	1/2	0.312	3.00	1.50		2.06		3.62	4.00	1.00	0.34	6.52	0.69	0.50	1.38	See
REG	(12.70)	(7.92)	(76.20)	(38.10)		(52.40)		(91.95)	(101.60)	(25.40)	(8.64)	(165.61)	(17.53)	(12.70)	(35.05)	Figure 3
VEE	3/4	0.437	3.50	1.75		2.65		4.62	10.25	1.12	0.44	7.88	0.88	0.63	1.75	
REG	(19.05)	(11.10)	(88.90)	(44.45)		(67.31)		(117.35)	(260.35)	(28.45)	(11.18)	(200.15)	(22.35)	(16.00)	(44.45)	
VEE	1	0.562	4.12	2.06		3.31		5.88	10.25	1.62	0.56	9.75	1.25	1.13	1.75	
REG	(25.40)	(14.27)	(104.65)	(52.32)		(84.12)		(149.35)	(260.35)	(41.15)	(14.22)	(247.65)	(31.75)	(28.70)	(44.45)	
	REG VEE REG VEE REG VEE REG	REG (6.35) VEE 3/8 REG (9.53) VEE 1/2 REG (12.70) VEE 3/4 REG (19.05) VEE 1	REG (6.35) (5.16) VEE 3/8 0.219 REG (9.53) (5.56) VEE 1/2 0.312 REG (12.70) (7.92) VEE 3/4 0.437 REG (19.05) (11.10) VEE 1 0.562	REG (6.35) (5.16) (50.80) VEE 3/8 0.219 2.50 REG (9.53) (5.56) (63.50) VEE 1/2 0.312 3.00 REG (12.70) (7.92) (76.20) VEE 3/4 0.437 3.50 REG (19.05) (11.10) (88.90)	REG (6.35) (5.16) (50.80) (25.40) VEE 3/8 0.219 2.50 1.25 REG (9.53) (5.56) (63.50) (31.75) VEE 1/2 0.312 3.00 1.50 REG (12.70) (7.92) (76.20) (38.10) VEE 3/4 0.437 3.50 1.75 REG (19.05) (11.10) (88.90) (44.45) VEE 1 0.562 4.12 2.06	REG (6.35) (5.16) (50.80) (25.40) VEE 3/8 0.219 2.50 1.25 REG (9.53) (5.56) (63.50) (31.75) VEE 1/2 0.312 3.00 1.50 REG (12.70) (7.92) (76.20) (38.10) VEE 3/4 0.437 3.50 1.75 REG (19.05) (11.10) (88.90) (44.45) VEE 1 0.562 4.12 2.06	REG (6.35) (5.16) (50.80) (25.40) (35.71) VEE 3/8 0.219 2.50 1.25 1.41 REG (9.53) (5.56) (63.50) (31.75) (35.71) VEE 1/2 0.312 3.00 1.50 2.06 REG (12.70) (7.92) (76.20) (38.10) (52.40) VEE 3/4 0.437 3.50 1.75 2.65 REG (19.05) (11.10) (88.90) (44.45) (67.31) VEE 1 0.562 4.12 2.06 3.31	REG (6.35) (5.16) (50.80) (25.40) (35.71) VEE 3/8 0.219 2.50 1.25 1.41 REG (9.53) (5.56) (63.50) (31.75) (35.71) VEE 1/2 0.312 3.00 1.50 2.06 REG (12.70) (7.92) (76.20) (38.10) (52.40) VEE 3/4 0.437 3.50 1.75 2.65 REG (19.05) (11.10) (88.90) (44.45) (67.31) VEE 1 0.562 4.12 2.06 3.31	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) VEE 3/8 0.219 2.50 1.25 1.41 2.62 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) VEE 1/2 0.312 3.00 1.50 2.06 3.62 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) VEE 3/4 0.437 3.50 1.75 2.65 4.62 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) VEE 1 0.562 4.12 2.06 3.31 5.88	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) VEE 1 0.562 4.12 2.06 3.31 5.88 10.25	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) (28.45) VEE 1 0.562 4.12 2.06 3.31 5.88 10.25 1.62	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) (28.45) (11.18) VEE 1 0.562 4.12 2.06 3.31 5.88 10.25 1.62 0.56	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) (165.61) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) (28.45) (11.18) (200.15) VEE 1 0.562 4.12 <t< th=""><th>REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) (165.61) (17.53) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) (28.45) (11.18)</th><th>REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 0.38 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 0.50 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) (165.61) (17.53) (12.70) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 0.63 REG (19.05) (11.10) (88.90)</th><th>REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (19.05) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 0.38 1.00 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (25.40) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 0.50 1.38 REG (12.70) (79.2) (76.20) (38.10) (52.40) (91.95) (10.60) (25.40) (8.64) (165.61) (17.53) (12.70) (35.05) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 0.63 <</th></t<>	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) (165.61) (17.53) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 REG (19.05) (11.10) (88.90) (44.45) (67.31) (117.35) (260.35) (28.45) (11.18)	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 0.38 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 0.50 REG (12.70) (7.92) (76.20) (38.10) (52.40) (91.95) (101.60) (25.40) (8.64) (165.61) (17.53) (12.70) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 0.63 REG (19.05) (11.10) (88.90)	REG (6.35) (5.16) (50.80) (25.40) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (19.05) VEE 3/8 0.219 2.50 1.25 1.41 2.62 3.00 0.75 0.22 5.00 0.62 0.38 1.00 REG (9.53) (5.56) (63.50) (31.75) (35.71) (66.55) (76.20) (19.05) (5.59) (127.00) (15.75) (9.65) (25.40) VEE 1/2 0.312 3.00 1.50 2.06 3.62 4.00 1.00 0.34 6.52 0.69 0.50 1.38 REG (12.70) (79.2) (76.20) (38.10) (52.40) (91.95) (10.60) (25.40) (8.64) (165.61) (17.53) (12.70) (35.05) VEE 3/4 0.437 3.50 1.75 2.65 4.62 10.25 1.12 0.44 7.88 0.88 0.63 <


G - Packing gland mounting hole drill size


 G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. Panel mount screws for the 1/8" NPT are M3.5 x .7 thd.


For prompt service, Parker Autoclave stocks select products.

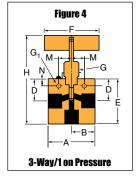
Consult factory.

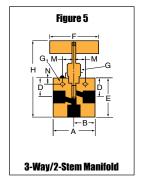
All dimensions for reference only and subject to change.

^{*} H Dimension is with stem in closed position.

Ctom	Outside	Orifico					Dime	nsions -	inches (mm)					Block	Valve
Туре			A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern
on P	ressu	ire														
VEE	1/4	.0203	2.00	1.00		1.41		2.44	3.00	0.75	0.22	4.81	0.62	0.38	0.75	
REG	(6.35)	(5.16)	(50.80)	(25.40)		(35.71)		(61.98)	(76.20)	(19.05)	(5.59)	(122.17)	(15.75)	(9.65)	(19.05)	
VEE	3/8	0.219	2.50	1.25		1.41		2.44	3.00	0.75	0.22	4.81	0.62	0.38	1.00	
REG	(9.53)	(5.56)	(63.50)	(31.75)		(35.71)		(61.98)	(76.20)	(19.05)	(5.59)	(122.17)	(15.75)	(9.65)	(25.40)	
VEE	1/2	0.312	3.00	1.50		2.06		3.38	4.00	1.00	0.34	6.31	0.69	0.50	1.38	See
REG	(12.70)	(7.92)	(76.20)	(38.10)		(52.40)		(85.85)	(101.60)	(25.40)	(8.64)	(160.27)	(17.53)	(12.70)	(35.05)	Figure 4
VEE	3/4	0.437	3.50	1.75		2.65		4.25	10.25	1.12	0.44	7.50	0.88	0.63	1.75	
REG	(19.05)	(11.10)	(88.90)	(44.45)		(67.31)		(107.95)	(260.35)	(28.45)	(11.18)	(190.50)	(22.35)	(16.00)	(44.45)	
VEE	1	0.562	4.12	2.06	·	3.31		5.12	10.25	1.62	0.56	9.09	1.25	1.13	1.75	
REG	(25.40)	(14.27)	(104.65)	(52.32)		(84.07)		(130.05)	(260.35)	(41.15)	(14.22)	(230.89)	(31.75)	(28.70)	(44.45)	
	ON P VEE REG VEE REG VEE REG VEE REG VEE	Stem Diameter Type Tube On Pressi 1/4 REG (6.35) VEE 3/8 REG (9.53) VEE 1/2 REG (12.70) VEE 3/4 REG (19.05)	Stem Diameter Orifice Type Tube Diameter On Pressure VEE 1/4 .0203 REG (6.35) (5.16) VEE 3/8 0.219 REG (9.53) (5.56) VEE 1/2 0.312 REG (12.70) (7.92) VEE 3/4 0.437 REG (19.05) (11.10) VEE 1 0.562	Diameter Diameter Tube Diameter Di	Diameter Diameter Tube Diameter A B	Diameter Diameter Tube Diameter A B C	Stem Type Diameter Tube Orifice Diameter A B C D On Pressure VEE 1/4 .0203 2.00 1.00 1.41 REG (6.35) (5.16) (50.80) (25.40) (35.71) VEE 3/8 0.219 2.50 1.25 1.41 REG (9.53) (5.56) (63.50) (31.75) (35.71) VEE 1/2 0.312 3.00 1.50 2.06 REG (12.70) (7.92) (76.20) (38.10) (52.40) VEE 3/4 0.437 3.50 1.75 2.65 REG (19.05) (11.10) (88.90) (44.45) (67.31) VEE 1 0.562 4.12 2.06 3.31	Diameter Tube Diameter A B C D D1	Stem Type Diameter Tube Orifice Diameter A B C D D1 E On Pressure VEE 1/4 .0203 2.00 1.00 1.41 2.44 REG (6.35) (5.16) (50.80) (25.40) (35.71) (61.98) VEE 3/8 0.219 2.50 1.25 1.41 2.44 REG (9.53) (5.56) (63.50) (31.75) (35.71) (61.98) VEE 1/2 0.312 3.00 1.50 2.06 3.38 REG (12.70) (7.92) (76.20) (38.10) (52.40) (85.85) VEE 3/4 0.437 3.50 1.75 2.65 4.25 REG (19.05) (11.10) (88.90) (44.45) (67.31) (107.95) VEE 1 0.562 4.12 2.06 3.31 5.12	Diameter Tube Diameter Tube Diameter A B C D D1 E F	Diameter Diameter Tube Diameter A B C D D1 E F G	Diameter Tube Diameter Tube Diameter A B C D D1 E F G G1	Diameter Tube Diameter Tube Diameter A B C D D1 E F G G1 H*	Diameter Tube Diameter Tube Diameter A B C D D1 E F G G1 H* M	Diameter Tube Diameter Tube Diameter A B C D D1 E F G G1 H* M N	Difficience Diameter Tube Diameter Tube Diameter A B C D D D

3-Way/2-Stem Manifold


		-														
15P4075	VEE	1/4	0.203	2.00	1.00	1.69	1.19	3.38	3.00	0.75	0.22	5.75	0.62	0.38	0.75	
15P4085	REG	(6.35)	(5.16)	(50.80)	(25.40)	(42.88)	(30.18)	(85.85)	(76.20)	(19.05)	(5.59)	(146.05)	(15375)	(9.65)	(19.05)	
15P6075	VEE	3/8	0.219	2.50	1.25	1.69	1.19	3.38	3.00	0.75	0.22	5.75	0.62	0.38	1.00	
15P6085	REG	(9.53)	(5.56)	(63.50)	(31.75)	(42.88)	(30.18)	(85.85)	(76.20)	(19.05)	(5.59)	(146.05)	(15.75)	(9.65)	(25.40)	
15P8075	VEE	1/2	0.312	3.00	1.50	2.56	1.75	5.12	4.00	1.00	0.34	8.05	0.69	0.50	1.38	See
15P8085	REG	(12.70)	(7.92)	(76.20)	(38.10)	(65.07)	(44.45)	(130.05)	(101.60)	(25.40)	(8.64)	(204.47)	(17.53)	(12.70)	(35.05)	Figure 5
10P12075	VEE	3/4	0.437	3.50	1.75	3.25	2.25	6.50	10.25	1.12	0.44	9.75	0.88	0.63	1.75	
10P12085	REG	(19.05)	(11.10)	(88.90)	(44.45)	(82.55)	(57.15)	(165.10)	(260.35)	(28.45)	(11.18)	(247.65)	(22.35)	(16.00)	(44.45)	
10P16075	VEE	1	0.562	4.12	2.06	3.75	2.81	7.50	10.25	1.62	0.56	11.47	1.25	1.13	1.75	
10P16085	REG	(25.40)	(14.27)	(104.65)	(52.32)	(95.25)	(71.42)	(190.50)	(260.35)	(41.15)	(14.22)	(291.38)	(31.75)	(28.70)	(44.45)	


G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

*H Dimension is with stem in closed position. All dimensions for reference only and subject to change. For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

NOTE: NPT (Pipe) Connections:

- NPT threads must be sealed using a high quality PTFE tape and/or paste product. Refer to thread sealant manufacturer's instructions on how to apply thread sealant.
- Sealing performance may vary based on many factors such as pressure, temperature, media, thread quality, thread material, proper thread engagement and proper use of thread sealant.
- Customer should limit the number of times an NPT fitting is assembled and disassembled because thread deformation during assembly will result in deteriorating seal quality over time. When using only PTFE tape, consider using thread lubrication to prevent galling of mating parts.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-1251SE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

 $\begin{tabular}{ll} \textbf{Caution!} & Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty. \end{tabular}$

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

Mini Valves

MVE/MV Series

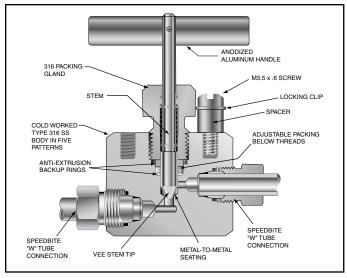
Pressures to 15,000 psi (1034 bar)

Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Parker Autoclave a reputation for reliable efficient product performance.

Parker Autoclave Engineers has long been established as the world leader in high pressure fluid handling components for the chemical/petrochemical, research, and oil and gas industries.

- Mini valve provides a rugged compact design.
- Tubing sizes available are 1/16" and 1/8".
- Rising stem/barstock body design.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem and packing gland design have been selected to achieve extended thread cycle life and reduced handle torque.
- Vee stem tip provided.
- · Available in five body patterns.
- Mini valves available with metric tube glands.

Parker Autoclave Engineers valves are complemented by a complete line of mini fittings and tubing. The MVE/MV Series uses Parker Autoclave Engineers' SpeedBite connection. This single-ferrule compression sleeve connection delivers fast, easy make-up and reliable bubble-tight performance in liquid or gas service.



Pressures to 15,000 psi (1034 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/16	W062	0.055 (1.40)	0.05	15,000 (1034)
1/8	W125	0.078 (1.98)	0.11	15,000 (1034)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%. (Based on water)
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Parker Autoclave tubing

Ordering Procedure

For complete information on valve options, contact your Sales Representative. MVE Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: **MVE2001** MVE 2 00 XX Outside Diameter Body Valve Stem Options Series **Tube Size** Pattern Type See valve options 1-1/16" 00 - rotating Vee stem MVE - 3/8 Hex tubing 1 - two-way straight for ratings. **2**-1/8" (on-off service) glands 2 - two-way angle 01 - rotating Regulating stem MV - 10mm Hex tubing 3 - three-way, two on pressure (tapered tip for regulating glands 4 - three way, one on pressure and shut-off) 5 - three-way, two stem manifold valve

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing is available for service from 0°F (-17.8°C) to 600°F (316°C) by adding the following suffixes to catalog order number.†

TG standard valve with PTFE glass packing to 600°F (316°C).

Valve Maintenance

Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

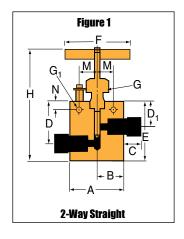
[†]Parker Autoclave Engineers does not recommend compression sleeve connections below 0°F (-17.8°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

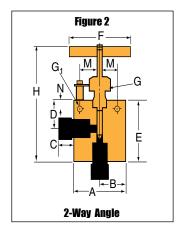
Catalog	Stem	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valve
Number	Туре		Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Pattern
0 W (0																

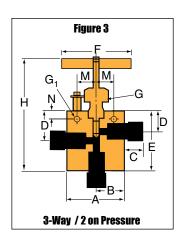
2-Way Straight

MVE1001	VEE	1/16	0.055	1.38	0.69	0.45	0.81	0.56	1.13	1.75	0.56	0.16	2.38	0.45	0.20	0.56	
MV1001	VEE	(1.57)	(1.40)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(28.58)	(44.45)	(14.27)	(4.04)	(60.38)	(11.49)	(5.16)	(14.27)	See
MVE2001	VEE	1/8	0.078	1.38	0.69	0.45	0.81	0.56	1.13	1.75	0.56	0.16	2.38	0.45	0.20	0.56	Figure 1
MV2001	VEE	(3.18)	(1.98)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(28.58)	(44.45)	(14.27)	(4.04)	(60.38)	(11.49)	(5.16)	(14.27)	

2-Way Angle


,																
MVE1002	VEE	1/16	0.055	1.38	0.69	0.45	0.56	1.38	1.75	0.56	0.16	2.63	0.45	0.20	0.56	
MV1002	VEE	(1.57)	(1.40)	(34.93)	(17.45)	(11.43)	(14.30)	(34.93)	(44.45)	(14.27)	(4.04)	(66.75)	(11.49)	(5.16)	(14.27)	See
MVE2002	VEE	1/8	0.078	1.38	0.69	0.45	0.56	1.38	1.75	0.56	0.16	2.38	0.45	0.20	0.56	Figure 2
MV2002	VEE	(3.18)	(1.98)	(34.93)	(17.45)	(11.43)	(14.30)	(34.93)	(44.45)	(14.27)	(4.04)	(60.38)	(11.49)	(5.16)	(14.27)	


3-Way / 2 on Pressure


MVE1003	VEE	1/16	0.055	1.38	0.69	0.45	0.81	0.56	1.44	1.75	0.56	0.16	2.69	0.45	0.20	0.56	
MV1003	VEE	(1.57)	(1.40)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(36.50)	(44.45)	(14.27)	(4.04)	(68.30)	(11.49)	(5.16)	(14.27)	See
MVE2003	VEE	1/8	0.078	1.38	0.69	0.45	0.81	0.56	1.44	1.75	0.56	0.16	2.69	0.45	0.20	0.56	Figure 3
MV2003	VEE	(3.18)	(1.98)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(36.50)	(44.45)	(14.27)	(4.04)	(68.30)	(11.49)	(5.16)	(14.27)	

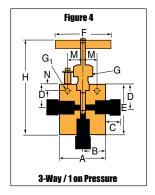
G - Packing gland mounting hole drill size
G₁ - Bracket mounting hole size
Panel mounting screws are M3.5 x .7 thd.
Tube glands are 3/8" hex on standard MVE models
Tube glands are 10mm hex on MV models.

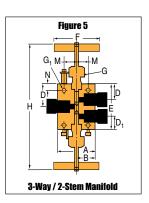
For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

Cata	alog	Stem	Outside	Orifice					Dimer	nsions -	inches (ı	nm)					Block Thick-	Valva
Num	. "	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Valve Pattern

3-Way / 1 on Pressure


MVE1004	VEE	1/16	0.055	1.38	0.69	0.45	0.56	0.56	1.44	1.75	0.56	0.16	2.69	0.45	0.20	0.56	
MV1004	VEE	(1.57)	(1.40)	(34.93)	(17.45)	(11.43)	(14.22)	(14.30)	(36.50)	(44.45)	(14.27)	(4.04)	(68.30)	(11.49)	(5.16)	(14.27)	See
MVE2004	VEE	1/8	0.078	1.38	0.69	0.45	0.56	0.56	1.44	1.75	0.56	0.16	2.69	0.45	0.20	0.56	Figure 4
MV2004	VEE	(3.18)	(1.98)	(34.93)	(17.45)	(11.43)	(14.22)	(14.30)	(36.50)	(44.45)	(14.27)	(4.04)	(68.30)	(11.49)	(5.16)	(14.27)	


3-Way / 2-Stem Manifold

MVE1005	VEE	1/16	0.055	1.38	0.69	0.45	0.81	0.56	1.63	1.75	0.56	0.16	4.11	0.45	0.20	0.56	
MV1005	VEE	(1.57)	(1.40)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(41.28)	(44.45)	(14.27)	(4.04)	(104.44)	(11.49)	(5.16)	(14.27)	See
MVE2005	VEE	1/8	0.078	1.38	0.69	0.45	0.81	0.56	1.63	1.75	0.56	0.16	4.11	0.45	0.20	0.56	Figure 5
MV2005	VEE	(3.18)	(1.98)	(34.93)	(17.45)	(11.43)	(20.65)	(14.30)	(41.28)	(44.45)	(14.27)	(4.04)	(104.44)	(11.49)	(5.16)	(14.27)	

G - Packing gland mounting hole drill size
G₁ - Bracket mounting hole size
Panel mounting screws are M3.5 x .7 thd.
Tube glands are 3/8 hex on standard MVE models
Tube glands are 10mm hex on MV models

* H Dimension is with stem in closed position. All dimensions for reference only and subject to change. For prompt service, Parker Autoclave stocks select products. Consult factory.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0114SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

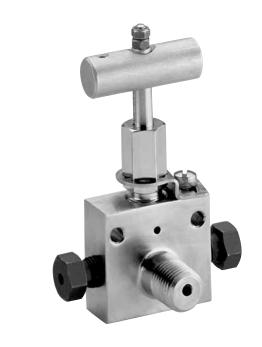
Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

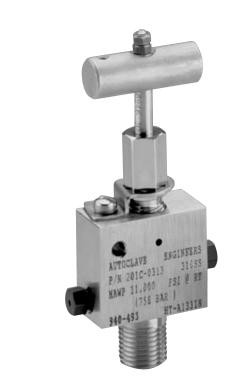
Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Inw Pressure

Bottle Valve Series

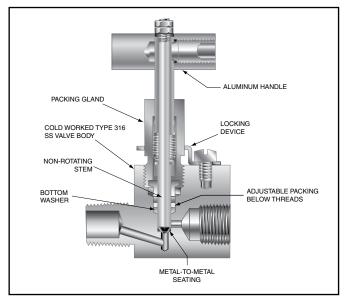

Pressures to 15,000 psi (1034 bar)

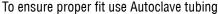

Since 1945 Parker Autoclave Engineers has designed and built premium quality valves, fittings and tubing. Parker Autoclave Engineers has long been established as the world leader in high-pressure fluid handling components for the chemical/petrochemical, research, and oil and gas industries. Bottle valves are used on sample bottles and cylinders for remote sampling in the oil industry.

Bottle Valve Features:

- BTV Series valve design provides male inlet connections from 1/8" to 1/2" NPT.
- Outlet connections in NPT or tube to 1/4".
- Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- Metal-to-metal seating achieves bubble-tight shutoff, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Available with Vee stem tips.
- Available in five body patterns.

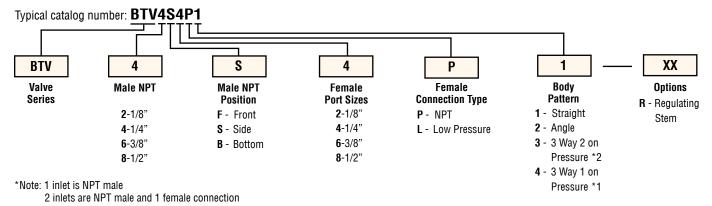
Parker Autoclave Engineers valves are complemented by a complete line of low pressure fittings, tubing, check valves and line filters. The Bottle Valve Series use Parker Autoclave Engineers' SpeedBite connection. This single-ferrule compression sleeve-connection delivers fast, easy make-up and reliable bubble-tight performance in liquid or gas service.





Valve Series - BTV Series

Pressures to 15,000 psi (1034 bar)



Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. BTV Series valves are furnished complete with connection components, unless otherwise specified.

Valve Options

Standard Parker Autoclave valves with PTFE packing may be operated to 450°F (232°C).

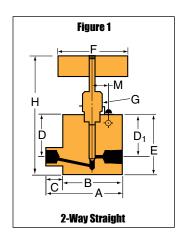
R regulating stem

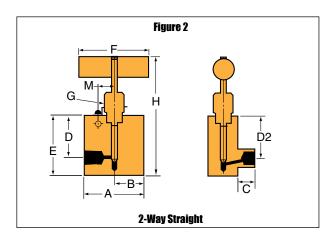
Parker Autoclave Engineers does not recommend compression sleeve connections below 0°F (-17.8°C) or above 650°F(343°C). For additional valve options, contact your Sales Representative.

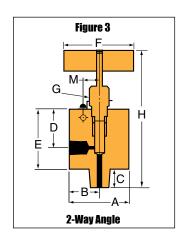
Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit.

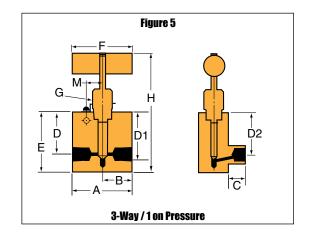

(Example: RBTV4F2L1)


Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.


Catalan	Ctom	Dina/	Ouifica					Dime	nsions -	inches (mm)					Value
Catalog Number	Stem Type	_ '. '	Orifice Diameter	A	В	С	D	D ₁	D ₂	E	F	G	Н	М	Block Thickness	Valve Pattern
2-Way Si	traig	ht					'	'								
BTV4S4P1	VEE	1/4	0.094	2.00	1.31	0.69	0.82	0.82		1.28	1.50	0.61	3.41	0.56	0.75	See
Side Inlet		(6.35)	(2.39)	(50.80)	(33.27)	(17.53)	(20.83)	(20.83)		(32.51)	(38.10)	(15.49)	(86.61)	(14.22)	(19.05)	Figure 1
BTV4F2L1	VEE	1/8	0.094	1.50	0.75	0.63	0.81		0.88	1.38	1.50	0.61	3.49	0.56	0.63	See
Front Inlet		(3.18)	(2.39)	(38.10)	(19.05)	(15.88)	(20.57)		(22.35)	(35.05)	(38.10)	(15.49)	(88.65)	(14.22)	(16.00)	Figure 2
2-Way A	ngle															
BTV4B2L2	VEE	1/8	0.094	2.00	1.00	0.81	1.19			1.63	1.50	0.75	4.75	0.62	0.75	See
Bottom Inlet		(3.18)	(2.39)	(50.80)	(25.40)	(20.57)	(30.23)			(41.40)	(38.10)	(19.05)	(120.65)	(15.75)	(19.05)	Figure 3
BTV4B4P2	VEE	1/4	0.203	1.50	1.00	1.25	1.19			1.63	3.00	0.75	5.30	0.62	0.75	See
Bottom Inlet		(6.35)	(5.16)	(38.10)	(25.40)	(31.75)	(30.23)			(41.40)	(76.20)	(19.05)	(134.62)	(15.75)	(19.05)	Figure 3



Catalog	Stem	Dino/	Orifice					DIME	nsions -	inches (mm)					Valve
•			Diameter	l _	В	C	D	D ₁	D ₂	E	F	G	Н	M	Block Thickness	Pattern
3-Way/2	on P	ressu	re													
BTV4F2L3	VEE	1/8	0.094	1.50	0.75	0.63	0.81	1.06	0.88	1.38	1.50	0.75	3.49	0.50	0.75	See
Front Inlet		(3.18)	(2.39)	(38.10)	(19.05)	(15.88)	(20.57)	(26.92)	(22.35)	(34.93)	(38.10)	(19.05)	(88.65)	(12.70)	(19.05)	Figure 4
3-Way/1	on Pr	essui	re													
BTV4F2L4	VEE	1/8	0.094	1.50	.75	0.63	0.81	0.81	0.88	1.38	1.50	0.75	3.49	0.50	0.75	See
Front Inlet		(3.18)	(2.39)	(38.10)	(19.05)	(15.88)	(20.57)	(20.57)	(22.35)	(34.93)	(38.10)	(19.05)	(86.66)	(12.70)	(19.05)	Figure 5

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

G - Packing gland mounting hole drill size

 $^{^{\}ast}$ H Dimension is with stem in closed position.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-1248SE

January 2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

 $\begin{tabular}{ll} \textbf{Caution!} & Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty. \end{tabular}$

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Necle Valves

MicroMetering

VRMM Series

Pressures to 60,000 psi (4137 bar)

MicroMetering valves are designed for applications where more precise control of small flows is required than is possible with a standard regulating stem. Barrel and Thimble micrometer design permits settings to be repeated.

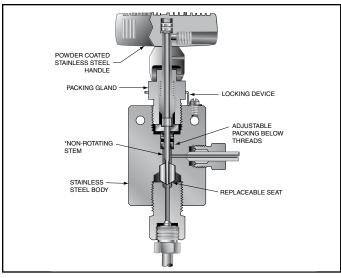
Metering is effected by a finely tapered stem acting in a precisely mated replaceable seat. Very fine stem position is achieved utilizing a 40 TPI thread. The Barrel and Thimble are set for proper metering at the factory.

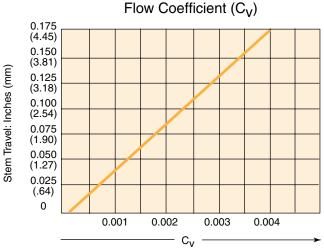
These valves are designed for metering only and cannot be used as a shutoff valve. Minimum flow is factory set and occurs at "0" position. DO NOT OPERATE THE VALVE BELOW THE ZERO POSITION OR DAMAGE WILL RESULT. When shutoff action is required, a correlated shutoff valve from Parker AE series 10V, 30VM or 60VM should be installed in series with the MicroMetering valve.

MicroMetering Valve Features:

- Barrel and Thimble design permits repeatable settings.
- Barrel divisions every 0.025"
- 25 Thimble divisions, each representing 0.001" stem travel
- One revolution = 0.025" stem travel
- Cold-worked type 316 stainless steel body with stainless steel packing gland. Stem and seat are cold-worked type 316 stainless steel.
- Packing below stem threads is PTFE for the 10VRMM and 30VRMM valves and nylonleather for the 60VRMM. For packing options, see Technical Information Section.
- SpeedBite "W" connections are used on the 10VRMM and Parker AE High Pressure coned-and-threaded connections on 30VRMM and 60VRMM.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, check valves and line filters.


Needle Valves - MicroMetering


Pressures to 60,000 psi (4137 bar)

	Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _V	Pressure Rating psi (bar) @ Room Temperature**
10VRMM 30VRMM 60VRMM	1/4	W125 F250C F250C	0.062 (1.57) 0.062 (1.57) 0.062 (1.57)	0.004 0.004 0.004	15,000 (1034) 30,000 (2069) 60,000 (4137)
60VRMM		F375C	0.062 (1.57)	0.004	60,000 (4137)

Note:

To ensure proper fit use Parker Autoclave Engineers tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. VRMM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 60VRMM4812 60VRMM 4 81 2 XX Outside Diameter Valve Stem/Seat Body Options **Tube Size** Series Type Pattern For extreme 10VRMM 2 - two-way angle 2-1/8" 81 - Rotating regulating one temperature and other 30VRMM 4-1/4" piece stem with replaceable seat. options, see 60VRMM 6-3/8" Valve Options.

NOTE:

Ordering procedure for information only. Models available are shown in tables on next page.

^{**} For complete temperature ratings see pressure/temperature rating guide in Technical Information section

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number

TG - standard valve with PTFE glass packing to 600°F (316°C). See note below.

GY - standard valve with graphite braided yarn packing to 800°F (427°C).

HT - extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B - standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

LT - extended stuffing box valve with PTFE packing & Cryogenic trim materials to -423°F (-252°C).

Note: 60VRMM valves supplied with Peak/PTFE Glass/Peek

Parker Autoclave Engineers does not recommend compression sleeve connections below 0°F (-17.8°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

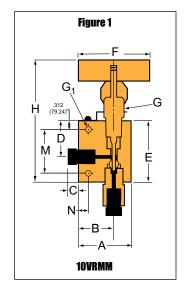
See Needle Valve options for stem and seat coatings for erosive service.

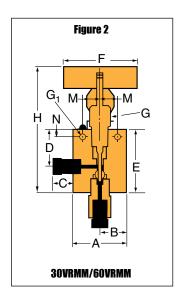
Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R60VRMM**)

Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found on the valve drawing or contact your Sales Representative for information.


Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Outside Diameter	Orifica					Dime	ensions -	inches ((mm)				Block Thick-	Valve
Number	l <u> </u>	Diameter	A	В	C	D	E	F	G	G ₁	Н*	M	N	ness	Pattern
10VRMM2812	1/8	0.062	1.50	0.88	0.31	0.94	1.56	3.00	0.62	0.16	5.06	1.00	0.25	0.75	
	(3.17)	(1.57)	(38.10)	(22.35)	(7.87)	(23.87)	(39.62)	(76.20)	(15.74)	(4.06)	(128.52)	(25.40)	(6.35)	(19.05)	
* Note: M dimensio	n is distand	ce between	holes for m	nounting bra	acket.										Figure 1
30VRMM4812	1/4	0.062	2.00	1.00	0.50	1.12	2.00	3.00	0.97	0.22	5.06	0.69	0.50	1.00	
	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(28.44)	(50.80)	(76.20)	(24.63)	(5.58)	(128.52)	(17.25)	(12.70)	(25.40)	
60VRMM4812	1/4	0.062	2.00	1.00	0.50	1.31	2.63	3.00	0.97	0.22	6.06	0.69	0.38	1.00	See
	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(66.80)	(76.20)	(24.63)	(5.58)	(153.92)	(17.25)	(9.65)	(25.40)	Figure 2
60VRMM6812	3/8	0.062	2.00	1.00	0.53	1.31	2.63	3.00	0.97	0.22	6.06	0.69	0.38	1.00	
	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.80)	(76.20)	(24.63)	(5.58)	(153.92)	(17.25)	(9.65)	(25.40)	

G - Packing gland mounting hole drill size

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

G₁ - Bracket mounting hole size Panel mounting drill size: 0:22" all valves.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0115SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Needle Valves

Block and Bleed

MVBB Series

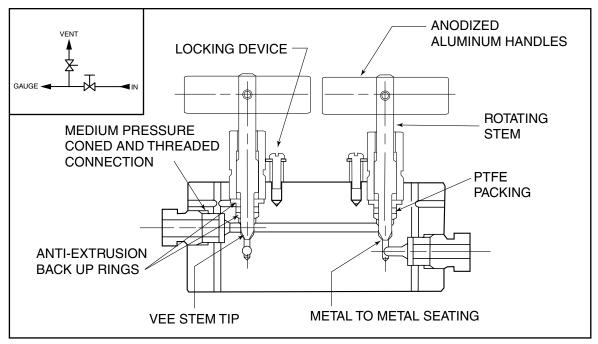
Pressures to 20,000 psi (1379 bar)

Parker Autoclave Engineers series MVBB block and bleed valve is a two stem manifold valve providing an economical and convenient method of blocking, bleeding and calibrating pressure transmitters and gauges. The valve utilizes the mini valve packing and stem design making it compact and easy to use. The valve can be surface or panel mounted for safe operation. In addition, manifold style valves reduce the number of fittings and space required for installation.

Block and Bleed Features:

- MVBB Series valve design provides large valve performance in a small package
- Tubing sizes: 1/4" and 3/8"
- · Rising stem/barstock body design.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem and packing gland design have been selected to achieve extended thread cycle life and reduced handle torque.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubings and accessories. The MVBB Series uses Parker Autoclave Engineers' medium pressure connections. This coned and threaded connection provides a reliable bubble-tight seal for dependable performance in gas or liquid service.


Pressures to 20,000 psi (1379 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _V	Pressure Rating psi (bar) @ Room Temperature**
1/4	SF250CX	0.093 (2.36)	0.20	20,000 (1379)

Notes:

^{**} For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

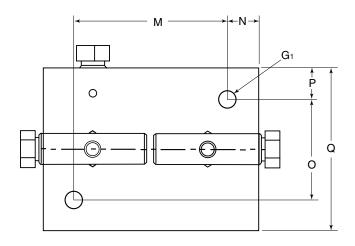
To ensure proper fit use Autoclave tubing

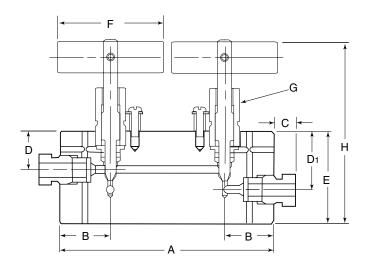
Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing is available for service from 0°F (-17.8°C) to 800°F (427°C) by adding the following suffixes to catalog order number.

TG standard valve with PTFE glass packing to 600°F (316°C)


GY standard valve with Graphite braided yarn packing to 800°F (427°C).


For additional valve options, contact your Sales Representative.

Note: Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Cotolog	Ctom	Outside Diameter	Orifica		Dimensions - inches (mm)													
Catalog Number	Type	Tube	Diameter		В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	0	Р	Q
20MVBB	VEE	1/4	0.094	3.50	0.813	0.38	0.625	0.938	1.50	1.75	0.56	0.281	2.94	2.50	0.485	1.63	.500	2.625
		(6.35)	(2.39)	(88.90)	(20.65)	(9.65)	(15.88)	(23.83)	(38.10)	(44.45)	(14.27)	(7.14)	(74.68)	(63.50)	(12.32)	(41.40)	12.70	66.68
20MVBB6	VEE	3/8	0.094	3.88	1.00	0.44	0.625	0.938	1.50	1.75	0.56	0.281	2.94	2.88	0.50	1.63	.500	2.625
		(9.53)	(2.39)	(98.60)	(25.40)	(11.10)	(15.88)	(23.83)	(38.10)	(44.45)	(14.27)	(7.14)	(74.68)	(73.15)	(12.70)	(41.40)	12.70	66.68

For complete information on available options, contact your Sales representative. MVBB Series valves are furnished with connection components unless otherwise specified.

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size

* H Dimension is with stem in closed position. All dimensions for reference only and subject to change. For prompt service, Parker **Autoclave Engineers stocks** select products. Consult factory.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0116SE

January2013

Instrumentation Products Division

Autoclave Engineers Operation 8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Needle Valves

Double Block and Bleed

20DBNV Series

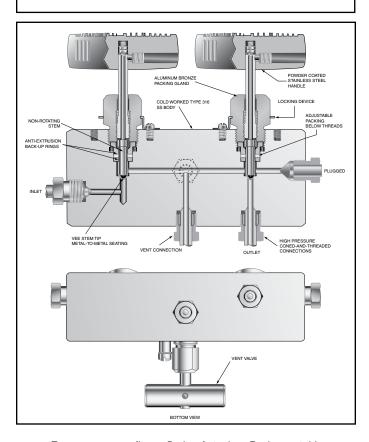
Pressures to 20,000 psi (1379 bar)

Parker Autoclave Engineers series DBNV double block and bleed valve is a three system manifold valve providing an economical and convenient method of blocking and bleeding in applications such as pressure monitoring and test, chemical injection and drain line isolation. The valve utilizes our standard valve packing and stem design to make it compact and easy to use. Manifold style valves reduce the number of fittings and space required for installation.

Block and Bleed Features:

- 20DBNV Series valve design provides large valve performance in a small package.
- Tubing sizes: 1/4" to 1".
- · Rising stem/barstock body design.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem and packing gland design have been selected to achieve extended thread cycle life and reduced handle torque.
- Temperatures from -100°F (-73°C) to 600°F (316°C)

Parker Autoclave Engineers' valves are complemented by a complete line of fittings, tubings and accessories. The 20DBNV Series uses Parker Autoclave Engineers' pressure connections. This coned and threaded connection provides a reliable bubble-tight seal for dependable performance in gas or liquid service.



Pressures to 20,000 psi (1379 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _V	Pressure Rating psi (bar) @ Room Temperature**
1/4	SF250CX	0.093 (2.36)	0.10	20,000 (1379)
3/8	SF375CX	0.093 (2.36)	0.27	20,000 (1379)
9/16	F562C	0.093 (2.36)	0.27	20,000 (1379)

Notes:

** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Parker Autoclave Engineers tubing

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers' valves with PTFE packing may be operated to 450°F (232°C). High temperature packing is available for service from 0°F (-17.8°C) to 800°F (427°C) by adding the following suffixes to catalog order number.

TG standard valve with PTFE glass packing to 600°F (316°C).

B standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

For additional valve options, contact your Sales Representative.

Note: Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Ordering Procedure

For complete information on available end connections, see end connections options below. 20DBNV valves are furnished complete with tube connections.

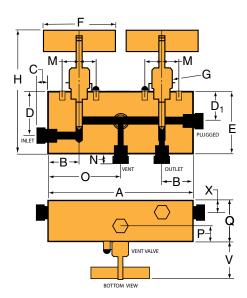
Typical catalog number: 20DBNV M4 M4 XXX 20DBNV **M4** XXX **M4** Valve Tube **Vent Connection Options** Series Connection M4 - SF250CX20 TG - PTFE Glass Packing 20DBNV Double M4 - SF250CX20 (see chart below) B - Cryogenic Trim Block & Bleed M6-SF375CX20 -100°F (-73°C) Needle Valve H9 -F562C K - Anti-vibration Collet & (see chart below) Gland Assembly

Connection Options

Catalog Number	Tube Connection Number	Connection	MAWP @ Room Temperature	Vent Connection Number	Vent Connection
20DBNVM4M4	M4	SF250CX20	20,000 psi (1379 bar)	M4	SF250CX20
20DBNVM6M4	M6	SF375CX20	20,000 psi (1379 bar)	M4	SF250CX20
20DBNVH9M4	H9	F562C	20,000 psi (1379 bar)	M4	SF250CX20

MAWP: Maximum Allowable Working Pressure

Valve Options


See needle valve options for complete information on available stem types, optional connections and additional valve options. For material options consult factory.

Valve Maintenance

Consult your Parker Autoclave Engineers representative for pricing on repair kits. Refer to the Operation and Maintenance manual for proper maintenance procedures.

Catalog	Stem	Pipe	Orifice		Dimensions - inches (mm)														
Number	Type	Size	Dia.	Α	В	C	D	D ₁	E	F	G	Н	M	N	0	Р	Q	V	Х
20DBNVM4M4	VEE	1/4	0.094	5.25	1.00	0.38	1.50	1.13	2.13	3.00	1.00	4.65	0.69	0.50	0.75	0.63	1.50	1.43	.50
ZUDDNVINAM4	VEE	(6.35)	(2.39)	(133.35)	(25.40)	(9.65)	(38.10)	(28.70)	(54.10)	(76.20)	(25.40)	(118.11)	(17.53)	(12.70)	(19.05)	(16.00)	(38.10)	(36.32)	(12.70)
20DBNVM6M4	VEE	3/8	0.094	5.25	1.00	0.44	1.50	1.13	2.13	3.00	1.00	4.65	0.69	0.50	0.75	0.63	1.50	1.43	.50
ZUDDNVINUM4	VEE	(9.53)	(2.39)	(133.35)	(25.40)	(11.18)	(38.10)	(28.70)	(54.10)	(76.20)	(25.40)	(118.11)	(17.53)	(12.70)	(19.05)	(16.00)	(38.10)	(36.32)	(12.70)
20DBNVH9M4	VEE	9/16	0.094	5.88	1.31	0.53	1.50	1.13	3.00	3.00	1.00	5.53	0.69	0.50	1.38	0.63	1.75	1.43	.75
ZUDDNVN9IVI4	VEE	(14.29)	(2.39)	(149.35)	(33.27)	(13.46)	(38.10)	(28.70)	(76.20)	(76.20)	(25.40)	(140.46)	(17.53)	(12.70)	(35.05)	(16.00)	(44.45)	(36.32)	(19.05)

For complete information on available options, contact your Sales representative. **20DBNV** Series valves are furnished with connection components unless otherwise specified.

G - Packing gland mounting hole drill size H Dimension is with stem in closed position. All dimensions for reference only and subject to change

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-9259BE

January 2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

Needle Valves - Wellhead Gauge and Bleed Valves

Pressures to 30,000 psi (2068 bar)

Wellhead	l Gauge Val	ve			
Series	Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v	Pressure Rating psi (bar) @ Room Temperature
20GV	3/8	F375C	0.125 (3.18)	0.23	20,000 (1379)
20GV	9/16	SF562CX	0.125 (3.18)	0.23	20,000 (1379)
30GV	9/16	F562C	0.125 (3.18)	0.33	30,000 (2068)
Bleed Va	lve				
20BV	3/8	SM375CX	0.093 (2.36)	-	20,000 (1379)
20BV	9/16	SM562CX	0.093 (2.36)	-	20,000 (1379)
30BV	9/16	M562C	0.093 (2.36)	-	30,000 (2068)*

Notes:

Rating @ 15,000 psi (1034 bar) in open position.

Glands and collars included

Parker Autoclave Engineers' Wellhead Gauge valves are designed for reliable shut-off service at a maximum working pressure of 30,000 psi (2068 bar). The Wellhead Gauge and Bleed Valves are standard in 316 stainless steel material. Special materials available on request.

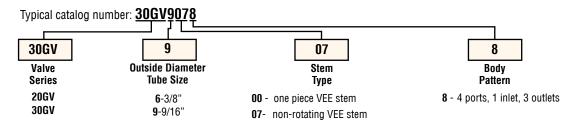
Applications:

Wellhead Gauge Valve

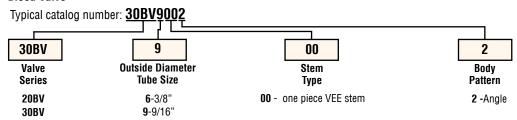
- Sample Lines
- · Instrument calibration

Bleed Valve

Pressure bleed

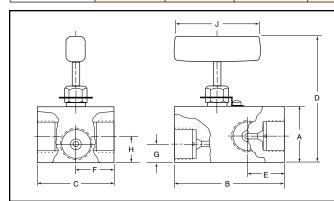

Gauge Valve Features:

- One inlet, three outlet ports
- Metal-to-metal bubble tight shut-off
- · Packing below stem threads
- · Two piece non-rotating stem on standard valves


Bleed Valve Features:

- One piece hex construction allows easy installation
- · Vent port tapped for plumbing to safe area
- Tee handle for easy operation
- · Positive blow out prevention on stem
- 1/8" NPT outlet connection

Ordering Procedure


Bleed Valve

^{*} Rating shown is in closed position.

Wellhead Gauge Valve

Catalog	Catalog Connection Connection Pressure Rating Dimensions - inches (mm)								Valve				
Number	Туре	Size	psi (bar)	A	В	C	D	E	F	G	Н	J	Pattern
20GV6078	SF375CX	3/8	20,000	2.00	3.12	2.00	4.52	1.13	1.00	0.50	0.94	3.00	
2000000			(1379)	(50.80)	(79.25)	(50.80)	(114.80)	(28.58)	(25.40)	(12.70)	(23.83)	(76.20)	
20GV9078	SF562CX	9/16	20,000	2.00	3.88	2.75	4.54	1.31	1.38	0.66	0.94	3.00	See
20013070			(1379)	(50.80)	(98.55)	(69.85)	(115.31)	(33.27)	(34.93)	(16.76)	(23.83)	(76.20)	Figure 1
30GV9078	F562C	9/16	30,000	2.00	3.88	2.75	4.50	1.31	1.38	0.66	0.94	3.00	
30013070			(2068)	(50.80)	(98.55)	(69.85)	(114.30)	(33.27)	(34.93)	(16.76)	(23.83)	(76.20)	

		l .
	20GV6078	.25 (6.4
	20GV9078	.38 (9.7
	30GV9078	.38 (9.7
"M"———————————————————————————————————		

 K
 L
 "M" Dia.

 20GV6078
 .25 (6.4)
 .25 (6.4)
 .28 (7.1)

 20GV9078
 .38 (9.7)
 .38 (9.7)
 .28 (7.1)

 30GV9078
 .38 (9.7)
 .38 (9.7)
 .28 (7.1)

Mounting Dimensions

Figure 1 - Wellhead Gauge Valve

Bleed Valve

Catalog	Connection	Connection	Pressure Rating		Dimensi	ons - inc	hes (mm	1)	Valve
Number	Туре	Size	psi (bar)	A	В	C	D	E	Pattern
20BV6002	SM375CX	3/8	20,000	3.23	2.42	1.12	1.38	1.50	←E →
20010002			(1379)	(82.04)	(61.47)	(28.45)	(35.05)	(38.10)	
20BV9002	SM562CX	9/16	20,000	3.68	2.86	1.12	1.38	1.50	D HEX→ I I C A
20210002			(1379)	(93.47)	(76.64)	(28.45)	(35.05)	(38.10)	
2001/0002	M562C	9/16	30,000	3.44	2.61	1.12	1.38	1.50	Connection
30BV9002			(2068)	(87.38)	(66.29)	(28.45)	(35.05)	(38.10)	1/8 NPT (F) Connection

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-1250SE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

 $\begin{tabular}{ll} \textbf{Caution!} & Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty. \end{tabular}$

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

Necle Valves

Extreme Temperature

HT, LT and PV Series

Pressures to 60,000 psi (4137 bar)

Parker Autoclave Engineers has two different styles of valves for extreme temperature. Standard valves can be supplied with packing for operation from -100°F (-73°C) to 800°F (427°C), or with the addition of an extended packing housing for operation from -423°F (-252°C) to 1200°F (649°C). The extended packing housing provides the means of removing the packing from the extreme temperature medium. Machined grooves on the housing act as a heatsink to remove heat or cold.

The second, which is economically priced, is a modified standard designed for the power industry. It operates to 1200°F (649°C) with graphite packing and no extended packing housing.

- The extreme temperature option can be ordered on low, medium, high, micro-metering and other valve series.
- Reliable long life operation with extended stuffing box at very high and low temperatures.
- Design available for operation to 1200°F (649°C) without extended packing housing.
- Available with a variety of tubing connections and orifice sizes.
- Non-rotating stem.
- Wide range of material options
- Adjustable packing below threads.
- · Metal to metal seating.
- Anti-extrusion back-up rings.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, and accessories.

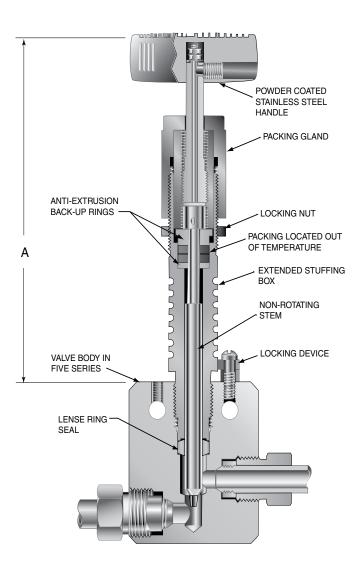
Applications:

- Hot well condenser
- Super-heated steam hookup/ measurement
- Supercritical fluid processing
- Boiler ignition system

Needle Valve - HT, LT Series

Standard Valve with Stuffing Box option - Pressures to 60,000 psi (4137 bar)

High Temperature Valves to 1200°F (649°C)


High Temperature Packing Option

Standard Parker Autoclave Engineers valves can be operated up to 800°F (427°C) at the packing with appropriate packing materials. See table in Technical Section for temperature ratings and ordering information.

High Temperature Extended Stuffing Box Option "HT"

For operation above 800°F (427°C) at the packing, optional extended stuffing box removes packing and stem threads from the hot zone. The "HT" option is standard graphite-yarn packing; add "HT" to valve order number. For other packing materials, add both "HT" and the suffix for the desired packing material (See table in Technical Section).

High or Low Temperature Air Operated Valves with extended stuffing box can be ordered by adding suffix "HT" to Air Operated Valve order number.

Cryogenic Valves to -423°F (256°C)

Low Temperature Trim Materials Option "B"

While all WETTED parts in most Parker AE valves are type 316SS, some TRIM parts are constructed of mechanically preferable materials. For low temperature to -100°F (-73°C), type 316SS trim parts and PTFE packing can be furnished (except Series 100V and 150V). To order, add suffix "B" to valve order number.

Cryogenic Extended Stuffing Box Option "LT"

For operation below -100°F (-73°C) or for rigorous cycling, an extended stuffing box removes packing from the extreme low temperature zone. The "LT" option also includes many type 316 SS trim parts and PTFE packing. Add "LT" suffix to valve order number.

Valve Series	O.D. Tube Size inches	Dimension"A" inches (mm)
10V	1/8 1/4 3/8 1/2	5.38 (136.65) 5.94 (150.87) 5.94 (150.87) 5.94 (150.87)
SW	1/4 3/8 1/2	5.50 (139.70) 5.50 (139.70) 6.31 (160.27)
10SM & 20SM	1/4 3/8 9/16 3/4 1	5.50 (139.70) 5.50 (139.70) 6.31 (160.27) 6.31 (160.27) 6.31 (160.27)
30SC	1	9.52 (241.80)
30VM	1/4 3/8 9/16	5.94 (150.87) 5.94 (150.87) 5.94 (150.87)
40VM	9/16	6.19 (157.22)
60VM	1/4 3/8 9/16	5.87 (149.10) 5.94 (150.87) 6.19 (157.22)
10VRMM	1/8	5.38 (136.65)
30VRMM	1/4	5.94 (150.87)
60VRMM	1/4 3/8	6.06 (153.92) 6.06 (153.92)

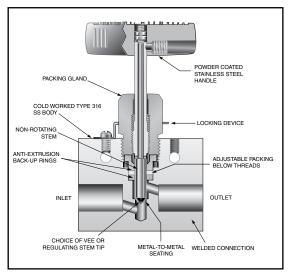
Note: Caution should be exercised in proper selection of medium pressure tubing based on actual operating conditions. Two series available: 10,000 psi (690 bar) and 20,000 psi (1379 bar).

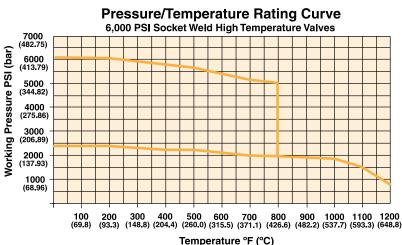
Handle Extenders are available to facilitate extreme temperature operation of valves and for remote actuation through an insulating wall or barricade. See appropriate valve ordering section.

^{*} See Valve Actuators section.

All dimensions for reference only and subject to change.

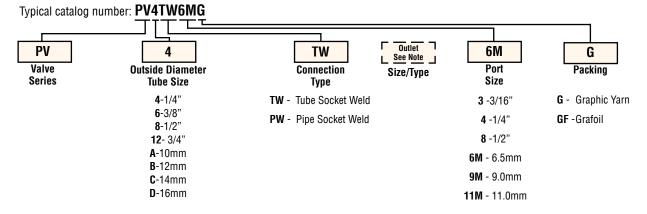
Needle Valve - PV Series


Pressures to 6,000 psi (414 bar)


Tube Outside Diameter	Connection Type	Orifice Size	Pressure Rating psi (bar) @ Room Temperature**
1/4	TW/PW	3/16"	6,000 (414)
3/8	TW/PW	1/4"	6,000 (414)
1/2	TW/PW	1/4"	6,000 (414)
3/4	TW/PW	1/2"	6,000 (414)
10mm	TW	6.50mm	6,000 (414)
12mm	TW	6.50mm	6,000 (414)
14mm	TW	6.50mm or 9.0mm	6,000 (414)
16mm	TW	9.00mm or 11.0mm	6,000 (414)

TW - Tube Weld PW - Pipe Weld

Note: ** For temperature ratings see pressure/temperature rating guide chart below..



See Technical Information section for curve details.

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative.

Note: Use if outlet connection is different - Example: PV4TWATW6M-G

Valve Options

For optional connection sizes, connection types, material or other options not listed contact your sales representative.

Consult factory for availability of dissimilar end connections.

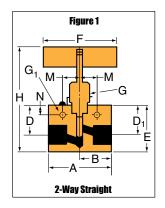
Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit.

(Example: RPV4TWG)

Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

	Stem	Outside Diameter Tube	Orifice Diameter	Dimensions - inches (mm)									Block Thick-	Valve			
				A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern
2-Way S	traig	ht															
PV4TW3G VI	VEE	1/4	0.187	2.00	1.00		1.41	1.41	2.00	3.00	0.75	0.22	4.43	0.62	0.38	0.75	
	VLL	(6.35)	(4.75)	(50.80)	(25.40)		(35.81)	(35.81)	(50.80)	(76.20)	(19.05)	(5.59)	(112.52)	(15.75)	(9.65)	(19.05)	
PVT6TW4G	VFF	3/8	0.250	2.00	1.00		1.41	1.41	2.00	3.00	0.75	0.22	4.43	0.62	0.38	0.75	
		(9.53)	(6.35)	(50.80)	(25.40)		(35.81)	(35.81)	(50.80)	(76.20)	(19.05)	(5.59)	(112.52)	(15.75)	(9.65)	(19.05)	See
									Metric (In)							Figure 1
PVCTW6MG	VEE	14.00	6.5	50.80	25.40		35.81	35.81	50.80	76.20	19.05	5.59	111.00	15.75	9.65	19.05	
		(0.55)	(0.26)	(2.00)	(1.00)		(1.41)	(1.41)	(2.00)	(3.00)	(0.75)	(0.22)	(4.37)	(0.62)	(0.38)	(0.75)	
PVCTW9MG	VEE	14.00	9.0	63.50	31.75		52.32	52.32	73.15	101.60	22.23	5.59	148.34	17.53	12.70	25.40	
		(0.55)	(0.35)	(2.50)	(1.25)		(2.06)	(2.06)	(2.88)	(4.00)	(0.88)	(0.22)	(5.84)	(0.69)	(0.50)	(1.00)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

* H Dimension is with stem in closed position. All dimensions for reference only and subject to change. For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0117SE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

Diverter

20DV Series

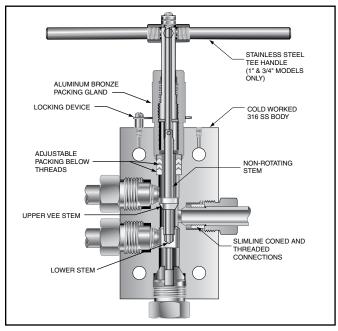
Pressures to 20,000 psi (1379 bar)

Parker Autoclave Engineers diverter valves provide the ability to direct incoming flow to one of two outlets. Flow is changed by rotating the handle in or out causing a double-ended stem to block the flow path to the outlet not needed. Diverter valves eliminate the need for multiple valves and the possibility of error in flow direction changes.

AE Diverter Valve Features:

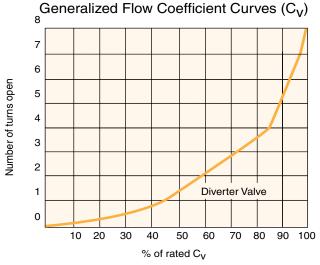
- Diverts incoming flow to one of two outlet lines.
- Tubing sizes from 9/16" to 1".
- Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, and accessories. The 20DV series uses Parker Autoclave Engineers' medium pressure connection. This coned and threaded connection provides a reliable bubble-tight seal for dependable performance to 20,000 psi (1379).

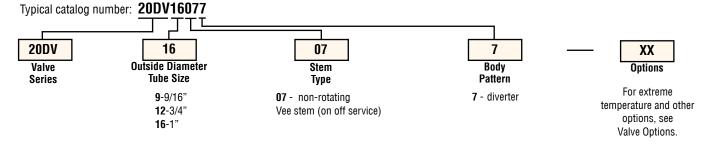

Valve Series - 20DV Series

Pressures to 20,000 psi (1379 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _V	Pressure psi (bar) @ Room Temperature**
9/16	SF562CX	0.359 (9.12)	1.5	20,000 (1379)
3/4	SF750CX	0.516 (13.10)	2.9	20,000 (1379)
1	SF1000CX	0.562 (14.27)	4.5	20,000 (1379)


Notes:

^{**} For complete temperature ratings see pressure/temperature rating guide in Technical Information section.



Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 20DV Series valves are furnished complete with connection components, unless otherwise specified.

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing and/or extended stuffing box is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

HT extended stuffing box valve with graphite braided yarn packing to 1200°F (648°C).

B standard valve with cryogenic trim materials and PTFE packing to -100°F (-73°C).

LT extended stuffing box valve with PTFE packing and cryogenic trim materials to -423°F (-252°C).

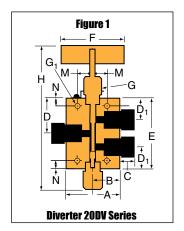
K anti-vibe collet gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R20DV16077**)

Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Ostalas	Catalog Stem Diameter Orifice Dimensions - inches (mm)										Block	Valve					
			Orifice Diameter	l _	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	Thick- ness	Pattern
20DV9077	VEE	9/16	0.359	2.50	1.25	0.53	2.41	1.75/1.63	4.69	4.00	1.00	0.34	8.88	0.69	0.50	1.00	
		(14.29)	(9.12)	(63.50)	(31.75)	(13.46)	(61.21)	(44.45/41.40)	(119.13)	(101.60)	(25.40)	(8.64)	(225.55)	(17.53)	(12.70)	(25.40)	
20DV12077	VEE	3/4	0.516	3.00	1.50	0.62	3.00	2.13/1.81	5.69	10.25	1.12	0.44	10.12	0.88	0.62	1.38	See
		(19.05)	(13.11)	(76.20)	(38.10)	(15.75)	(76.20)	(54.10/45.97)	(144.53)	(260.35)	(28.45)	(11.18)	(257.05)	(22.35)	(15.75)	(35.05)	Figure 1
20DV16077	VEE	1	0.562	4.12	2.06	0.72	3.75	2.81/2.62	7.25	10.25	1.62	0.56	12.79	1.25	1.12	1.75	
		(25.40)	(14.27)	(104.65)	(52.33)	(18.29)	(95.25)	(71.37/66.55)	(184.15)	(260.35)	(41.15)	(14.22)	(324.87)	(31.75)	(28.45)	(44.45)	

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

^{*} H Dimension is with stem in closed position. All dimensions for reference only and subject to change.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, asfety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0118SE

January2013

Autoclave Engineers

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Ynke

Y Series

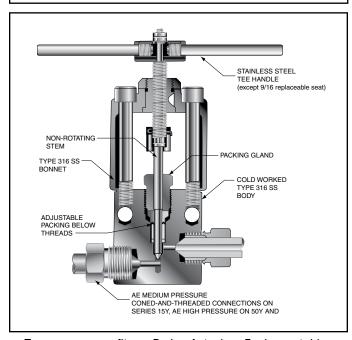
Pressures to 50,000 psi (3447 bar)

Parker Autoclave Engineers' yoke valves are extra heavyduty, plant grade instrument valves for industrial and severe service applications. Yoke valves feature low closing torque for ease of operation and are designed for use with Parker Autoclave Engineers medium and high pressure tubing and fittings.

Yoke Valve Features:

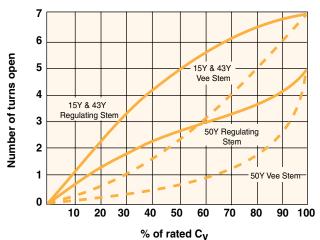
- Tubing sizes from 9/16" to 1".
- · Rising stem/barstock body design.
- Non-rotating stem prevents stem/seat galling.
- Metal-to-metal seating achieves bubble-tight shutoff, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- PTFE encapsulated packing provides dependable stem and body sealing.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tips.
- Available in two body patterns.
- Optional materials for cryogenic and other applications.

Parker Autoclave Engineers valves are complemented by a complete line of fittings, tubing, and accessories.



Pressures to 50,000 psi (3447 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure psi (bar) @ Room Temperature**
9/16	F562C	0.188 (4.76)	0.66	50,000 (3447)
3/4	SF750CX	0.438 (11.13)	2.41	15,000 (1034)
1	SF1000CX	0.562(14.27)	3.15	15,000 (1034)
1	F1000C43	0.375 (9.53)	2.3	43,000 (2965)


Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating quide in Technical Information section.

Generalized Flow Coefficient Curves (C_V)

To ensure proper fit use Parker Autoclave Engineers tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The Y Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: **50Y9071** 50Y 9 07 1 XX Outside Diameter Valve Stem/Seat Body Options Series **Tube Size** Type Pattern TG - PTFE Glass 9-9/16" 07 - non-rotating 15Y 1 - two-way straight Packing **12**-3/4" Vee stem (on-off service) 43Y 2 - two-way angle B - Cryogenic 50Y **16**-1.0" 08 - non-rotating Trim and PTFE Regulating stem (tapered tip for **Packing** Regulating and shutoff) See Valve options for ratings 87 - Vee stem with replaceable seat 88 - Regulating stem with replaceable seat

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). High temperature packing is available for service from 0°F (-17.8°C) to 600°F (316°C) by adding the following suffixes to catalog order number.

TG standard valve with PTFE glass packing to 600°F (316°C). **B** standard valve with cryogenic trim materials and PTFE packing to -100°F (-73°C).

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit.

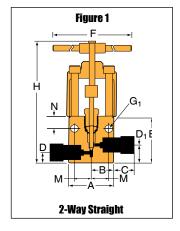
(Example: R50Y9071)

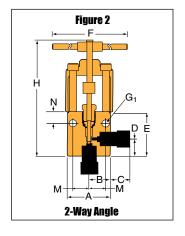
Valve Bodies: Valve bodies are available. Order using the eight (8)

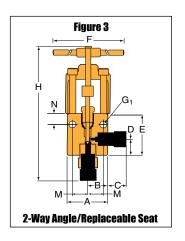
digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

0-1-1		Outside	0.:					Dime	nsions -	inches (mm)					Block	Valve
Catalog Number	Type	Diameter Tube	Orifice Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	Thick- ness	Pattern
-Way S	traig	ht															
15Y12071	VEE	3/4	0.438	3.00	1.50	0.63	.75	1.50	3.50	8.00		0.28	9.38	1.13	0.88	1.38	
15Y12081	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.88)	(19.05)	(38.10)	(88.90)	(203.20)		(7.11)	(238.25)	(28.58)	(22.23)	(34.93)	
15Y16071	VEE	1.00	0.562	4.13	2.06	0.63	.88	1.88	4.13	10.25		0.28	10.00	1.50	1.13	1.75	
15Y16081	REG	(25.40)	(14.27)	(104.78)	(52.39)	(15.88)	(22.35)	(47.75)	(104.78)	(260.35)		(7.11)	(254.00)	(38.10)	(28.58)	(44.45)	See
43Y16071	VEE	1.00	0.375	4.13	2.07	0.72	1.00	1.88	4.13	10.25		0.28	9.56	1.50	1.00	1.75	Figure 1
43Y16081	REG	(25.40)	(9.53)	(104.90)	(52.45)	(18.29)	(25.40)	(47.75)	(104.78)	(260.35)		(7.11)	(242.82)	(38.10)	(25.40)	(44.45)	
50Y9071	VEE	9/16	0.188	3.00	1.50	0.56	.688	1.25	3.25	13.00		0.50	8.69	1.13	0.88	1.38	
50Y9081	REG	(14.27)	(4.78)	(76.20)	(38.10)	(14.27)	(17.48)	(31.75)	(82.55)	(330.20)		(12.70)	(220.73)	(28.58)	(22.23)	(34.93)	
2-Way A l	ngle																
15Y12072	VEE	3/4	0.438	3.00	1.50	0.63	1.75		3.75	8.00		0.28	9.63	1.13	0.88	1.38	
15Y12082	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.88)	(44.45)		(95.25)	(203.20)		(7.11)	(244.48)	(28.58)	(22.23)	(34.93)	
15Y16072	VEE	1.00	0.562	4.13	2.06	0.63	2.25		4.50	10.25		0.28	10.38	1.50	1.13	1.75	
15Y16082	REG	(25.40)	(14.27)	(104.90)	(52.39)	(15.88)	(57.15)		(114.30)	(260.35)		(7.11)	(263.53)	(38.10)	(28.58)	(44.45)	See
43Y16072	VEE	1.00	0.375	4.13	2.07	0.72	2.31		4.56	10.25		0.28	10.80	1.50	1.00	1.75	Figure 2
43Y16082	REG	(25.40)	(9.53)	(104.90)	(52.45)	(18.29)	(58.67)		(115.82)	(260.35)		(7.11)	(274.32)	(38.10)	(25.40)	(44.45)	
50Y9072	VEE	9/16	0.188	3.00	1.50	0.56	1.50		3.50	13.00		0.50	8.81	1.13	0.88	1.38	
50Y9082	REG	(14.27)	(4.78)	(76.20)	(38.10)	(14.27)	(38.10)		(88.90)	(330.20)		(12.70)	(223.82)	(28.58)	(22.23)	(34.93)	
2-Way Aı	-														1		
15Y12872	VEE	3/4	0.438	3.00	1.50	0.63	2.06		4.00	8.00		0.28	11.31	1.13	0.88	1.38	


15Y12872	VEE	3/4	0.438	3.00	1.50	0.63	2.06	4.00	8.00	0.28	11.31	1.13	0.88	1.38	
15Y12882	REG	(19.05)	(11.13)	(76.20)	(38.10)	(15.88)	(52.32)	(101.60)	(203.20)	(7.11)	(287.27)	(28.58)	(22.23)	(34.93)	
15Y16872	VEE	1.00	0.562	4.13	2.06	0.63	2.06	4.13	10.25	0.28	11.75	1.50	1.03	1.75	
15Y16882	REG	(25.40)	(14.27)	(104.78)	(52.39)	(15.88)	(52.32)	(104.78)	(260.35)	(7.11)	(298.45)	(38.10)	(26.16)	(44.45)	See
43Y16872	VEE	1.00	0.375	4.13	2.07	0.72	2.13	4.38	10.25	0.28	11.95	1.50	1.00	1.75	Figure 3
43Y16882	REG	(25.40)	(9.53)	(104.78)	(52.45)	(18.29)	(54.10)	(111.25)	(260.35)	(7.11)	(303.53)	(38.10)	(25.40)	(44.45)	
50Y9872	VEE	9/16	0.188	3.00	1.50	0.56	1.38	3.38	4.00	0.28	12.12	1.13	1.06	1.38	
50Y9882	REG	(14.27)	(4.78)	(76.20)	(38.10)	(14.27)	(35.05)	(85.73)	(101.60)	(7.11)	(307.85)	(28.58)	(26.97)	(34.93)	


G - Bracket mounting hole size


* H Dimension is with stem in closed position.

All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult factory.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, asfety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0119SE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

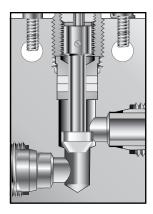
ISO-9001 Certified

Necle Valves

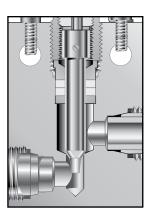
Options

Parker Autoclave Engineer's Needle Valves can be supplied with a number of options to meet your requirements. These include various materials of construction, packing material, high temperature packing, handle colors, stem options, custom valves, pneumatic actuators, and a number of other options.

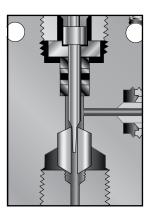
The following pages provide details on these options. For additional or technical information not found in this section, please consult the factory or local distributor.



Needle Valves - Stem Options


Three Stem Types

Three types of stems are offered by Parker Autoclave Engineers: Vee, Regulating and MicroMetering. Both Vee and Regulating stems are interchangable on most Parker AE valves and provide bubble-tight shut-off against liquids and gases.


VEE Stem

The Vee stem is used for direct on-off, metal-to-metal shut-off with quick-opening flow characteristics.

Regulating Stem

In some applications, more precise flow control is required than is possible with a Vee stem. For these cases, Autoclave offers a non-rotating, two-piece regulating stem which can be used for both control and shut-off. This stem has a 4° taper at the tip in conjunction with a standard 60° section for shut-off. While it is not as precise as the control associated with the MicroMetering stem, especially with smaller flows, it does offer substantially better control than the Vee stem.

MicroMetering Stem

Where precise control of small flows is required, Autoclave offers special MicroMetering valves. For complete information on MicroMetering valves, refer to Micro-Metering in the Needle Valve section.

Optional Materials

To order optional materials for wetted parts, add the following designations to the order number.

316L Type 316 extra low carbon stainless steel

HB *Hastelloy B-2

HC *Hastelloy C276 wetted parts

IN *Inconel 600 IN625 *Inconel 625 IN825 *Incoloy 825 KMO *Monel K500

MO *Monel 400 or 450

NI Nickel 200

TI Titanium grade 2

Note: For duplex, super duplex and other materials contact your sales representative.

^{*} Trademark names

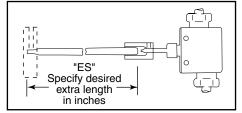
Air Operated Valves

Refer to Valve Actuators section for available models.

Packing Options

Refer to the valve model required, and see valve options in that section.

Optional Connections


In addition to standard tube connections, Parker Autoclave Engineers can supply many valve and fitting series with such optional end connections as Female or Male NPT, Socket Weld to O.D. tube size, or nominal pipe size, Female "AN" (MS 33649), Male "AN (MS 33656), Butt Weld and British straight thread. Contact factory for current information. Metric sizes can be supplied on most Parker Autoclave Engineers valves and fittings on special order.

Anti-Vibration Adder

For valves or other components supplied with anti-vibration option, add -K to catalog number. See fitting and tubing sections for anti-vibration information.

Stem and Handle Extenders

Stem Extenders are offered for high or low temperature operation on most Parker Autoclave Engineers valves. They are also useful for remote actuation, such as behind a barricade. To order any valve with a Stem Extender, add "ES" and the length (6", 12", 18" or 24") to the beginning of the valve catalog number: e.g. ES12-30VM4071. Other lengths on special order. To order stem extender only, please provide

extender number and the prefix of the valve model. Ex: ES12-20SM6 (handle not included.)

Abrasive or Highly Erosive Service Option

For service conditions where high flows, erosive mediums, or high pressures cause premature wear on stems and seats, N-Dura coating can be supplied to increase component life.

N-Dura coating is specifically used to enhance stem and seat life by providing a protective coating over a base substrate. This creates a thin, hard, protective coating with no effects of brittleness. The coating will not peel, chip or flake off the base material. The coating hardness is in a range of minimum 85 Rc surpassing other coatings and most materials.

The additional performance characteristics provided with the coating are reduced friction, corrosion resistance exceeding 400 stainless steel, and operating temperature ranges from -300°F to 1200°F. The coating has been tested in erosive applications, yielding far better results than Stellite®, which has been utilized extensively in these applications. With few exceptions, most major ferrous and non ferrous materials can be successfully coated.

Most valves in this catalog are available with N-Dura coated stems or with both N-Dura coated stems and replaceable seats. This coating is available for all stem options. To order both N-Dura stems on any valve pattern, add suffix "CS" to the catalog model number. To order both N-Dura coated stems and N-Dura coated replaceable seats (available on 2-way angle replaceable seat pattern only) add suffix "CSS" to the catalog number. Stellite® is available as a special upon request.

Optional Valve Handles

Blue powder coated stainless handles are standard on the majority of the valve series. Stainess handles can be purchased in different colors if required, contact the factory for color options.

Exception: Heavy-duty Stainless Steel T-handles assemblies are standard on our larger valves, see detailed information on each section for handles used.

Panel Mounting

Most Parker Autoclave Engineers valve series can be panel mounted through the locking device screw hole and a corresponding hole opposite the packing gland. To order a set of two panel mounting screws, add PM to the catalog order number.

Handle Lockouts: Handle lockouts are available to lockout valves in the open or closed position preventing unauthorized personnel from actuating valves during shutdowns or emergency situations. Lockouts consist of two halves that completely cover the valve handle and can be locked for security. They are constructed of durable plastic resistant to abrasion, solvents, and chemical agents. Consult factory for details.

To order lockouts with valves add -L to part number.

Lockout part numbers: 90088 - 2.5" (63.5) to 5.0" (127.0) handle size

90194 - 6.5" (165.1) to 10.0" (254.0) handle size

Note: Modifications may be required to some valves to use lockouts if purchased separately. See page 1 of ball valve options for photo of clamp style lockout.

Note: Many standard and special options and accessories for Parker Autoclave Engineers valves are listed here. Not all options apply to all valve series - see individual ordering pages for specifics. Some options listed here are special order options with prices quoted on application. See Custom Valves/Manifolds section for other options.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0120SE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers Specifications AES-222. Failure to do so will void warranty.

Actuator - Pneuma

Proumatic Valve Actuator

Pressures to 150,000 psi (10342 bar)

The need to control process and vent valves from a remote location makes air operated valves a vital component to many processing operations.

All Parker Autoclave Engineer's valves are available with diaphragm or piston type actuators. Six sizes of air actuators (light, heavy light, medium, heavy duty or extra heavy, single and double stage) are offered to meet the service requirements of Parker Autoclave Engineer's Low, Medium and High Pressure valves. Both air-to-open (normally closed) and air-to-close (normally open) designs are included in the product line. Optional air to open and close are available upon request.

For most Parker Autoclave Engineers valve series there is a choice of two or more actuator designs. This provides the most efficient and economical pneumatic valve operation for any combination of process requirements and available air pressure.

Actuators are available for outdoor service. These operators provide corrosion resistant components and prevent the ingress of outside elements.

Limit switch packages for valve position indication are also available upon request.

Pressures to 150,000 psi (10342 bar)

Pneumatic Actuator

Pressures to 150,000 psi (10342 bar)

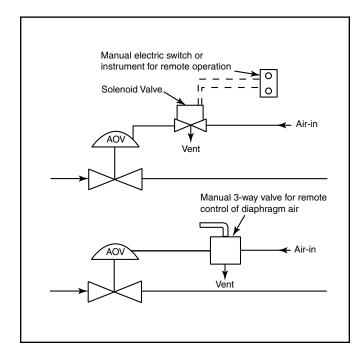
Six sizes of air operators (light, heavy light, medium, heavy duty or extra heavy, single and double stage) are offered for remote on-off operation or automatic operation of Parker Autoclave Engineer's low, medium or high pressure valves. The actuators are available in air-to-open (normally closed) and air-to-close (normally open) designs.

Remote on-off

Parker Autoclave Engineer's air-operated valves (ATO- Air-To-Open or ATC-Air-To-Close) can be controlled by a 3-way manual low pressure valve or by a low pressure solenoid valve. These are actuated by either a manual switch or an automatic control instrument. Parker Autoclave Engineer's air-operated, high pressure valves permit process control from a remotely located panel without the necessity of piping high pressure lines to the control panel. Safety is greatly increased and process "hold-up" is reduced. Prudent selection of ATO or ATC valves, together with the air controlling devices, permits the design of systems to "fail safe" in either the closed or open condition in the event of loss of operating air, or electrical failure, or malfunction.

Where explosion proof conditions are a requirement, pneumatic actuated valves can be considered. Remote mounting of the solenoid valve removes the potential from the hazardous area.

Ordering Procedure


To order a valve with an air operator, select the duty rating and type of the air operator from the chart below. Add the air operator identifying suffix to the catalog number of the Parker Autoclave Engineer's valve. To order a 2-way straight, 30VM vee stem, 9/16" valve with a medium duty air-to-close air operator, specify: ex: 30VM9071-C1S for a yoke style piston air actuated valve or 30VM9071-CM for an integral style diaphragm air operated valve.

To order the same valve with an extended high temperature stuffing box, add HT to the ordering number: ex: **30VM9071-C1SHT** or **30VM9071-CMHT**.

To order a dual air operator manifold valve, specify both operators if different. The same valve with a medium duty ATC on one stem and a medium duty ATO on the other, specify: ex: 30VM9075-C1S01S.

To order a valve with operators for outdoor service add an "OD" suffix to the catalog number.

Note: Ordering air actuated valves models with regulating stems is not recommend. These are open/close actuators and will not regulate flow.

Duty Bating	Onovotov	Tuno	Ordoring Suffix
Duty Rating	Operator	Type	Ordering Suffix
	Diaphragm	Air-to-open	OL .
Light		Air-to-close	CL
	Piston	Air-to-open	OLP
		Air-to-close	CLP
Mini-Light	Piston	Air-to-open	OHLP
Ergin	1 101011	Air-to-close	CHLP
	Diaphragm	Air-to-open	ОМ
Medium	Біарінаўііі	Air-to-close	СМ
Medialli	Piston	Air-to-open	018
	PISTOII	Air-to-close	C1S
	Disabasasa	Air-to-open	ОН
	Diaphragm	Air-to-close	СН
Heavy		Air-to-open	028
	Piston	Air-to-close	C2S
Extra Heavy	Dieter	Air-to-open	H01S
Single Stage	Piston	Air-to-close	HC1S
Extra Heavy	Distant.	Air-to-open	H02S
Double Stage	Piston	Air-to-close	HC2S
	Outdoor Servic	e Actuators	,
	p	Air-to-open	0180D
Medium	Piston	Air-to-close	C1SOD
	p	Air-to-open	02SOD
Heavy	Piston	Air-to-close	C2SOD
Extra Heavy	Distan.	Air-to-open	HO1SOD
Single Stage	Piston	Air-to-close	HC1SOD
Extra Heavy	Distan	Air-to-open	HO2SOD
Doubl Stage	Piston	Air-to-close	HC2SOD

noumatic Valvo Actuators - Actuator Quick Selector Guide

This table allows the designer to quickly select an appropriate air actuator based on valve style and size, maximum system operating pressure and maximum available air pressure. For example, if the system operating pressure is 25,000 psi (1724 bar) and the

available air pressure is 60 psi (4.14 bar) and an air-to-open (spring fail closed) valve is required, a 30VM or 60VM valve with a heavy duty air operator can be used. More specific sizing data is available in the sizing charts on the following pages.

			Air-to-Close Light Medium Heavy Extra Heavy Extra								
Valve	Tube	Liç	jht	Med	ium	Hea	avy		Heavy Stage	Extra I Two S	
Series	Outside Diameter in (mm)	System Pressure psi (bar)	Air Pressure psi (bar)	System Pressure psi (bar)	Air Pressure psi (bar)	System Pressure psi (bar)	Air Pressure psi (bar)	System Pressure psi (bar)	Air Pressure psi (bar)	System Pressure psi (bar)	Air Pressure psi (bar)
	1/8 (3.18)	15,000 (1034.20)	100 (6.89)	15,000 (1034.20)	30 (2.07)						
	1/4 (6.35)	10,000 (689.46)	100 (6.89)	15,000 (1034.20)	40 (2.76)						
10V	3/8 (9.52)	10,000 (689.46)	100 (6.89)	15,000 (1034.20)	40 (2.76)						
	1/2 (12.70)			10,000 (689.46)	65 (4.48)						
	1/4 (6.35)			15,000 (1034.20)	65 (4.48)						
SW	3/8 (9.52)			15,000 (1034.20)	90 (6.21)	15,000 (1034.20)	50 (3.45)				
	1/2 (12.70)			8,000 (551.57)	100 (6.89)	10,000 (689.46)	60 (4.13)				
	9/16 (14.27)			8,600 (592.94)	100 (6.89)	10,000 (689.45)	55 (3.79)	10,000 (689.45)	45 (3.10)	10,000 (689.46)	20 (1.38)
10SM	3/4 (19.05)			4,,800 (330.94)	100 (6.89)	10,000 (689.46)	100 (6.89)	10,000 (689.46)	75 (5.17)	10,000 (689.46)	35 (2.41)
	1 (25.40)			2,800 (193.05)	100 (6.89)	6,300 (434.36)	100 (6.89)	8,500 (586.04)	100 (6.89)	10,000 (689.46)	35 (2.41)
	1/4 (6.35)			20,000 (1378.93)	95 (6.55)	20,000 (1378.93)	50 (3.45)				
	3/8 (9.52)			19,000 (1310.00)	100 (6.89)	20,000 (1378.93)	55 (3.79)				
20SM	9/16 (14.27)			10,700 (737.73)	100 (6.89)	20,000 (1378.93)	85 (5.86)	20,000 (1378.93)	60 (4.13)	20,000 (1378.93)	30 (2.07)
	3/4 (19.05)			6,100 (420.57)	100 (6.89)	13,600 (937.67)	100 (6.89)	19,000 (1310.00)	100 (6.89)	20,000 (1378.93)	50 (3.45)
	1 (25.40)			3,900 (268.89)	100 (6.89)	8,800 (606.73)	100 (6.89)	12,500 (861.83)	100 (6.89)	20,000 (1378.93)	75 (5.17)

NOTE: For 10P and 15P series pipe valves see sizing data tables.

Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

Pnoumatic Valvo Actuators - Actuator Quick Selector Guide

						Air-to-	Open				
Valve	Tube	Li	jht	Med	ium	Hea	avy		Heavy Stage	Extra I Two S	Heavy Stage
Series	Outside Diameter in (mm)	System Pressure psi (bar)	Air Pressure psi (bar)								
	1/8 (3.18)	8,200 (565.36)	60 (4.14)	15,000 (1034.20)	45 (3.10)						
10V	1/4 (6.35)	5,600 (386.10)	60 (4.14)	15,000 (1034.20)	65 (4.48)						
100	3/8 (9.52)	5,600 (386.10)	60 (4.14)	15,000 (1034.20)	65 (4.48)						
	1/2 (12.70)			10,000 (689.46)	95 (6.55)						
	1/4 (6.35)			15,000 (1034.20)	100 (6.89)						
SW	3/8 (9.52)			10,000 (689.46)	95 (6.55)	15,000 (1034.20)	75 (5.17)				
	1/2 (12.70)			6,000 (413.68)	95 (6.55)	10,000 (689.46)	75 (5.17)				
	9/16 (14.27)			7,900 (544.68)	95 (6.55)	10,000 (689.45)	75 (5.17)	10,000 (689.45)	65 (4.48)	10,000 (689.46)	40 (2.76)
10SM	3/4 (19.05)							10,000 (689.46)	95 (6.55)	10,000 (689.46)	65 (4.14)
	1 (25.40)							6,500 (448.15)	100 (6.89)	10,000 (689.46)	85 (5.81)
	1/4 (6.35)			20,000 (1378.93)	95 (6.55)	20,000 (1378.93)	50 (3.45)				
	3/8 (9.52)			18,250 (1258.27)	95 (6.55)	18,250 (1258.27)	50 (3.45)				
20SM	9/16 (14.27)			9,800 (675.68)	95 (6.55)	15,700 (1082.46)	75 (5.17)	20,000 (1378.93)	85 (5.86)	20,000 (1378.93)	55 (3.79)
	3/4 (19.05)					6,000 (413.68)	75 (5.17)	15,000 (1034.20)	100 (6.89)	20,000 (1378.93)	80 (5.52)
	1 (25.40)					4,000 (275.79)	75 (5.17)	10,000 (689.46)	100 (6.89)	20,000 (1378.93)	100 (6.89)

NOTE: For 10P and 15P series pipe valves see sizing data tables.

Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

Pnoumatic Valve Actuators - Actuator Quick Selector Guide

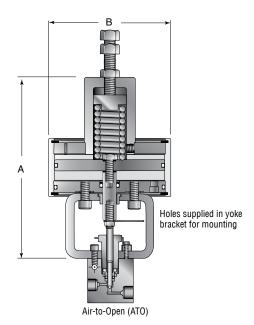
					Air-to	-Close							Air-to	-Open			
Valve	Tube	Li	ght	Medium		Heavy		Extra Two	Heavy Stage	Light		Medium		Heavy		Extra Heavy Two Stage	
Series	Outside Diameter in (mm)	System Pressure psi (bar)	Air Pressure psi (bar)														
30SC	1 (25.40)							30,000 (2068.39)	80 (5.52)							30,000 (2068.39)	80 (5.52)
	1/4 (6.35)			30,000 (2068.39)	50 (3.45)	30,000 (2068.39)	30 (2.07)					30,000 (2068.39)	75 (5.17)	30,000 (2068.39)	40 (2.76)		
30VM	3/8 (9.52)			30,000 (2068.39)	75 (5.17)	30,000 (2068.39)	40 (2.76)					30,000 (2068.39)	95 (6.55)	30,000 (2068.39)	50 (3.45)		
	9/16 (14.27)			30,000 (2068.39)	75 (5.17)	30,000 (2068.39)	40 (2.76)					30,000 (2068.39)	95 (6.55)	30,000 (2068.39)	50 (3.45)		
40VM	9/16 (14.27)					40,000 (2757.86)	45 (3.10)							40,000 (2757.86)	55 (3.79)		
	1/4 (6.35)			60,000 (4136.79)	75 (5.17)	60,000 (4136.79)	40 (2.76)					60,000 (4136.79)	95 (6.55)	60,000 (4136.79)	50 (3.45)		
60VM	3/8 (9.52)			60,000 (4136.79)	75 (5.17)	60,000 (4136.79)	40 (2.76)					60,000 (4136.79)	95 (6.55)	60,000 (4136.79)	50 (3.45)		
	9/16 (14.27)			60,000 (4136.79)	90 (6.21)	60,000 (4136.79)	45 (3.10)					60,000 (4136.79)	95 (6.55)	60,000 (4136.79)	50 (3.45)		
100VM	5/16 (7.92)			100,000 (6894.55)	100 (6.89)	100,000 (6894.65)	50 (3.45)							100,000 (6894.65)	70 (4.83)		
150V	5/16 (7.92)					150,000 (10341.97)	80 (5.52)							150,000 (10341.97)	75 (5.17)		

MVE/MV Mini Valves Series

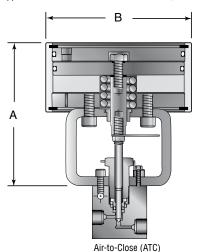
Valve	Tube Outside			Air-to-Close			Air-to-Open
	Diameter in (mm)	Mini-L	_ight		Mini-	Light	
MVE	1/16 (1.57)	15,000 (1034.20)	75 (5.17)		15,000 (1034.20)	100 (6.89)	
MV	1/8 (3.18)	15,000 (1034.20)	75 (5.17)		15,000 (1034.20)	100 (6.89)	

Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.


Proumatic Valvo Actuators - **Piston Style Pneumatic**

Pressures to 150,000 psi (10342 bar)


Piston type air-operated valves offer a unique, reliable design providing for a long and dependable life. These valves are more compact than diaphragm valves and are appropriate for applications such as high-flow gas and liquid delivery systems to reactors and mixer/vaporizers.

Parker Autoclave Engineer's piston type actuators feature:

- Small, compact, piston actuator
- Air-to-open or -close with spring return
- Yoke design for separation of process and air pressure †
- Ease of stem replacement
- Stem position indicator is standard[†]
- Positive shut-off metal-to-metal seating
- · High actuator cycle life
- 1/8" NPT air inlet connection except Extra Heavy duty has 3/8" NPT

NOTE: Air inlet for air to open operator is located in the back, opposite the front of valve. For other locations, consult factory.

† The standard Mini-Light operator does not utilize the yoke design. A yoke design is available upon request.

Air Operator Materials

Cylinder, piston, cover plates, spring housing

- Anodized aluminum (for corrosion and wear resistance).
 Yoke
 - Painted Steel

Technical Data

Air Operator

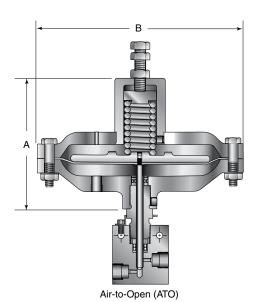
- Maximum allowable working pressure: 100 psi (6.89 bar)
- Allowable piston temperature range: -20°F to 200°F (-29°C to 93°C)
- Area of piston:

Light duty - 4.9 sq. in (31.6 sq. cm)
Mini-Light duty - 5.4 sq. in (34.8 sq. cm)
Medium duty - 19.6 sq. in (126.5 sq. cm)
Heavy duty - 39.2 sq. in (252.9 sq. cm)
Extra Heavy duty single stage - 56 sq. in (361.3 sq. cm)
Extra Heavy duty double stage - 112 sq. in (722.6 sq. cm)

- Approximate air usage/cycle @ 100 psi (6.89 bar):
 Light duty .003 SCF (.00008 SCM)
 Mini-Light duty .007 SCF (.0002 SCM)
 Medium duty .04 SCF (.0011 SCM)
 Heavy duty .08 SCF (.0022 SCM)
 Extra Heavy duty single stage .33 SCF (.0095 SCM)
- Extra Heavy duty double stage .67 SCF (.019 SCM)

 Tested to 100,000 cycles at 100 psi (6.89 bar) with no leakage or signs of wear or fatigue.

Duty	Туре	Ordering	Dimensions:	inches (mm)
Rating	Туро	Suffix	Α	В
Light	Air-to-open	0LP	5.50 (139.70)	2.81 (71.37)
Light	Air-to-close	CLP	3.94 (100.08)	2.81 (71.37)
† Mini-Light	Air-to-open	OHLP	3.84 (97.67)	3.06 (77.72)
Milli-Light	Air-to-close	CHLP	2.61 (66.3)	3.06 (77.70)
Medium	Air-to-open	018	8.25 (209.55)	5.69 (144.52)
Medium	Air-to-close	C1S	5.50 (139.70)	5.69 (144.52)
Heavy	Air-to-open	028	11.88 (301.75)	5.69 (144.52)
,	Air-to-close	C2S	8.50 (215.90)	5.69 (144.52)
Extra Heavy	Air-to-open	H01S	15.16 (385.06)	9.44 (239.77)
Single Stage	Air-to-close	HC1S	8.75 (217.67)	9.44 (239.77)
Extra Heavy	Air-to-open	H02S	18.50 (469.90)	9.44 (239.78)
Two Stage	Air-to-close	HC2S	11.94 (303.27)	9.44 (239.78)


Proumatic Valvo Actuators - Diaphragm Style Pneumatic

Pressures to 150,000 psi (10342 bar)

Diaphragm type air-operated valves are an efficient and economical means for "remote on-off" control of a wide range of process requirements. Diaphragm type actuators are designed to provide a dependable alternative to piston type actuators.

Parker Autoclave Engineer's diaphragm type air actuators feature:

- · Economical diaphragm design
- Air-to-open or -close with spring return
- Integral connection of valve and operator for height resticted applications.
- Oversized weep holes for separation of process and air operator pressures.
- Stem position indicator optional
- Medium actuator cycle life
- 1/8" NPT air inlet connection

Air-to-Close (ATC)

Upper and lower housing, spring housing

Anodized aluminum[†]

Diaphragm plate

· Cast ductile iron.

Technical Data

Air Operator

- Maximum allowable working pressure: 100 psi (6.89 bar)
- Allowable diaphragm temperature range: -40°F to 200°F (-40°C to 93°C)
- · Area of diaphragm:

Light duty - 4.9 sq. in (31.6 sq. cm) Medium duty - 19.6 sq. in (126.5 sq. cm) Heavy duty - 45.66 sq. in (294.58 sq. cm)

 Approximate air usage/cycle @ 100 psi (6.89 bar): Light duty - .007 SCF (.00019 SCM) Medium duty - .07 SCF (.0019 SCM) Heavy duty - .2 SCF (.0056 SCM)

†Note: OH and CH are carbon steel painted

Duty	Type	Ordering	Dimensions:	inches (mm)
Rating	турс	Suffix	Α	В
Light	Air-to-open	0L	5.00 (127.00)	4.25 (107.95)
Ligit	Air-to-close	CL	2.38 (60.45)	4.25 (107.95)
Medium	Air-to-open	ОМ	6.42 (163.01)	7.12 (180.90)
mourum	Air-to-close	СМ	3.75 (95.25)	7.12 (180.90)
Heavy	Air-to-open	ОН	8.75 (222.25)	10.00 (254.00)
iidavy	Air-to-close	СН	4.69 (119.13)	10.00 (254.00)

Pnoumatic Valvo Actuators - Air Operator Sizing Data

Air-to-Close

Series 10V and SW Valves

Valve Series	Operator Duty					Syst	em Pre	ssure k	SI (Mpa)		Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-4 (6.89-27.57)	6 (41.37)	8 (55.16)	10 (68.95)	12 (82.74)	14 (96.53)	15 (103.42)					
4000	Light Duty		30 (2.07)	40 (2.76)	55 (3.79)	65 (4.48)	85 (5.86)	95 (6.55)	100 (6.89)			15,000 (1034.20)	0.16 (4.06)	0.12
10V2	Medium Duty		25 (1.72)	25 (1.72)	25 (1.72)	25 (1.72)	25 (1.72)	25 (1. 72)	30 (2.07)					
10V4	Light Duty		40 (2.76)	60 (4.13)	75 (5.17)	95 (6.55)						10,000 (689.46)	0.19 (4.83)	0.20
10V4	Medium Duty		30 (2.07)	30 (2.07)	30 (2.07)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)			15,000 (1034.20)		
4000	Light Duty		40 (2.76)	60 (4.13)	75 (5.17)	100 (6.89)						10,000 (689.46)	0.19 (4.83)	0.20
10V6	Medium Duty	Air	30 (2.07)	30 (2.07)	30 (2.07)	35 (2.41)	35 (2.41)	35 (2.41)	40 (2.76)			15,000 (1034.20)		
10V8	Medium Duty	Pressure psi (bar)	50 (3.45)	50 (3.45)	55 (3.79)	65 (4.48)						10,000 (689.46)	0.31 (7.90)	0.86
SW4	Medium Duty		40 (2.76)	40 (2.76)	40 (2.76)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)			15,000 (1034.20)	0.25 (6.40)	0.65
owe	Medium Duty		50 (3.45)	50 (3.45)	55 (3.79)	70 (4.83)	75 (5.17)	85 (5.86)	90 (6.21)			15,000 (1034.20)	0.25 (6.40)	0.95
SW6	Heavy Duty		20 (1.38)	25 (1.72)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)			15,000 (1034.20)		
01110	Medium Duty		65 (4.48)	70 (4.83)	100 (6.89)							8,000 (551.57)	0.38 (9.70)	1.90
SW8	Heavy Duty		35 (2.41)	35 (2.41)	50 (3.45)	60 (4.13)						10,000 (698.46)		

Series 10SM Valves

Valve Series	Operator Duty					Sys	tem Pro	essure l	KSI (Mp	ia)			Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-3 (6.89-20.68)	4 (27.58)	6 (41.37)	8 (55.16)	10 (68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)			
	Medium Duty		65 (4.48)	65 (4.48)	75 (5.17)	100 (6.89)							8,600 (592.94)	0.38 (9.65)	1.75
	Heavy Duty		35 (2.41)	35 (2.41)	40 (2.76)	50 (3.45)	55 (3.79)						10,000 (689.46)		
10SM9	Extra Heavy Duty Single Stage		30 (2.07)	30 (2.07)	30 (2.07)	35 (2.41)	45 (3.10)						10,000 (689.46)		
	Extra Heavy Duty Two Stage		15 (1.03)	15 (1.03)	15 (1.03)	20 (1.38)	20 (1.38)						10,000 (689.46)		
	Medium Duty		90 (6.21)	100 (6.89)									4,800 (330.94)	0.44 (11.18)	2.80
	Heavy Duty	Air Pressure psi (bar)	45 (3.10)	45 (3.10)	60 (4.13)	80 (5.52)	100 (6.89)						10,000 (689.46)		
10SM12	Extra Heavy Duty Single Stage	por (bar)	35 (2.41)	35 (2.41)	50 (3.45)	60 (4.13)	70 (4.83)						10,000 (689.46)		
	Extra Heavy Duty Two Stage		20 (1.38)	20 (1.38)	25 (1.72)	30 (2.07)	35 (2.41)						10,000 (689.46)		
	Medium Duty		100 (6.89)										2,800 (193.05)	0.56 (14.22)	5.20
	Heavy Duty		60 (4.13)	70 (4.83)	100 (6.89)								6,300 (434.36)		
10SM16	Extra Heavy Duty Single Stage		45 (3.10)	50 (3.45)	70 (4.83)	95 (6.55)							8,500 (586.46)		
	Extra Heavy Duty Two Stage		25 (1.72)	25 (1. 72)	35 (2.41)	45 (3.10)	55 (3.79)						10,000 (689.46)		

Air-to-Close - Series 20SM Valves

Valve Series	Operator Duty					Syst	em Pre	ssure K	SI (Mpa	a)			Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-3 (6.89-20.68)	4 (27.58)	6 (41.37)	8 (55.16)	10 (68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)			
20SM4	Medium Duty		40 (2.76)	40 (2.76)	40 (2.76)	40 (2.76)	50 (3.45)	60 (4.13)	70 (4.83)	80 (5.52)	85 (5.86)	95 (6.55)	20,000 (1378.93)	0.25 (6.35)	0.31
15P4 [†]	Heavy Duty		20 (1.38)	20 (1.38)	20 (1.38)	20 (1.38)	25 (1. 72)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)			
20SM6	Medium Duty		45 (3.10)	45 (3.10)	45 (3.10)	45 (3.10)	55 (3.79)	65 (4.48)	75 (5.17)	85 (5.86)	95 (6.55)	100 (6.89)	19,000 (1309.98)	0.25 (6.35)	0.75
15P6 [†]	Heavy Duty		25 (1.72)	25 (1.72)	25 (1. 72)	25 (1.72)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	55 (3.79)	20,000 (1378.93)		
	Medium Duty		60 (4.13)	60 (4.13)	65 (4.48)	80 (5.52)	100 (6.89)						10,700 (737.73)	0.38 (9.65)	1.30
	Heavy Duty		30 (2.07)	30 (2.07)	30 (2.07)	40 (2.76)	50 (3.45)	55 (3.79)	60 (4.13)	70 (4.83)	80 (5.52)	85 (5.86)	20,000 (1378.93)		
20SM9 15P8 [†]	Extra Heavy Duty Single Stage		25 (1.72)	25 (1.72)	25 (1.72)	30 (2.07)	35 (2.41)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	20,000 (1378.93)		
	Extra Heavy Duty Two Stage	Air	15 (1.03)	15 (1.03)	15 (1.03)	15 (1. 03)	20 (1.38)	20 (1.38)	25 (1.72)	25 (1. 72)	30 (2.07)	30 (2.07)	20,000 (1378.93)		
	Medium Duty	Pressure psi (bar)	80 (5.44)	80 (5.44)	100 (6.80)								6,100 (420.57)	0.44 (11.18)	2.50
	Heavy Duty		40 (2.72)	40 (2.72)	50 (3.40)	60 (4.08)	75 (5.10)	90 (6.12)	100 (6.80)				13,600 (937.67)		
20SM12 10P12†	Extra Heavy Duty Single Stage		30 (2.07)	30 (2.07)	40 (2.76)	50 (3.45)	60 (4.13)	65 (4.48)	75 (5.17)	85 (5.86)	95 (6.55)	100 (6.89)	19,000 (1310.00)		
	Extra Heavy Duty Two Stage		15 (1.03)	15 (1.03)	20 (1.38)	25 (1.72)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	20,000 (1378.93)		
	Medium Duty		100 (6.89)	100 (6.89)									3,900 (268.89)	0.56 (14.22)	3.40
	Heavy Duty		50 (3.45)	50 (3.45)	70 (4.83)	100 (6.89)							8,800 (606.73)		
20SM16 10P16†	Extra Heavy Duty Single Stage		40 (2.76)	40 (2.76)	55 (3.79)	70 (4.83)	85 (5.86)	100 (6.89)					12,500 (861.83)		
	Extra Heavy Duty Two Stage		20 (1.38)	20 (1.38)	25 (1.72)	35 (2.41)	40 (2.76)	50 (3.45)	55 (3.79)	60 (4.48)	70 (4.83)	75 (5.17)	20,000 (1378.93)		

Series 30SC Valves

Valve Series	Operator Duty					Syst	tem Pre	ssure K	SI (Mpa	a)			Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-10 (6.89-68.94)	15 (103.42)	16 (110.31)	18 (124.10)	20 (137.89)	22 (151.68)	24 (165.47)	26 (179.26)	28 (193.05)	30 (206.84)			
30SC16	Extra Heavy Duty Two Stage	Air Pressure psi (bar)	30 (2.07)	40 (2.76)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	70 (4.83)	75 (5.17)	80 (5.52)	30,000 (2068.39)	0.50 (12.70)	2.61

^{**} C_V data is for 2-way straight valves. For angle pattern, add approximately 50% to the C_V valve.

CAUTION: While testing has shown O-rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring, FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

^{*}Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.
For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Air-to-Close - Series 30VM Valves

Valve Series	Operator Duty					Syst	em Pre	ssure K	SI (Mpa	1)				Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-10 (6.89-68.94)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)	22 (151.68)	24 (165.47)	26 (179.26)	28 (193.05)	30 (206.84)			
30VM4	Medium Duty		25 (1.72)	25 (1.72)	25 (1.72)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	55 (3.79)	30,000 (2068.39)	0.19 (4.83)	0.12
3001114	Heavy Duty	Air Pressure	15 (1.03)	15 (1.03)	15 (1.03)	15 (1.03)	20 (1.38)	20 (1.38)	20 (1.38)	25 (1.72)	25 (1. 72)	25 (1.72)	30 (2.07)			
30VM6 &	Medium Duty	psi (bar)	30 (2.07)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	70 (4.83)	75 (5.17)	30,000 (2068.39)	0.19 (4.83)	0.23 (30VM6)
30VM9	Heavy Duty		15 (1.03)	15 (1.03)	20 (1.38)	20 (1.38)	25 (1.72)	25 (1.72)	30 (2.07)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)			0.33 (30VM9)

Series 40VM Valves

Valve Series	Operator Duty					Syst	em Pre	ssure K	SI (Mpa	a)	Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-10 (6.89-68.94)	15 (103.42)	20 (137.89)	25 (172.37)	30 (206.84)	35 (241.31)	40 (275.79)				
40VM9	Medium Duty	Air Pressure	40 (2.76)	50 (3.45)	60 (4.13)	70 (4.83)	80 (5.52)	90 (6.21)	90 (6.21)		40,000 (2757.86)	0.25 (6.35)	0.28
40VM3	Heavy Duty	psi (bar)	20 (1.38)	25 (1.70)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	45 (3.10)				

Series 60VM Valves

Valve Series	Operator Duty					Syst	em Pre	ssure K	SI (Mpa	a)		Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-20 (6.89-137.89)	25 (172.37)	30 (206.84)	35 (241.31)	40 (275.79)	45 (310.26)	50 (344.73)	55 (379.21)	60 (413.68)			
60VM4	Medium Duty		30 (2.07)	30 (2.07)	35 (2.41)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	70 (4.83)	75 (5.17)	60,000 (4136.79)	0.25 (6.35)	0.08 (60VM4)
60VM6	Heavy Duty	Air Pressure	15 (1.03)	15 (1.03)	20 (1.38)	25 (1.72)	25 (1.72)	30 (2.07)	30 (2.07)	35 (2.41)	40 (2.76)			0.09 (60VM6)
60VM9	Medium Duty	psi (bar)	35 (2.41)	40 (2.76)	50 (3.45)	55 (3.79)	65 (4.48)	70 (4.83)	75 (5.17)	85 (5.86)	90 (6.21)	60,000 (4136.79)	0.25 (6.35)	0.14
5571113	Heavy Duty		20 (1.38)	20 (1.38)	25 (1.72)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)	45 (3.10)	45 (3.10)			

Series 100VM & 150V Valves

Valve Series	Operator Duty					Syst	em Pre	ssure K	SI (Mp	a)	Maximum Pressure psi (bar)*	Stem Travel in (mm)	Flow Coefficient**
			1-40 (6.89-275.79)	50 (344.73)	60 (413.68)	70 (482.63)	80 (551.57)	90 (620.52)	100 (689.46)	150 (1034.20)			
100VM4	Medium Duty	Air	50 (3.45)	55 (3.79)	65 (4.48)	75 (5.17)	85 (5.86)	95 (6.55)	100 (6.89)		100,000 (6894.65)	0.12 (3.05)	0.09
100VM5 100VM6	Heavy Duty	Pressure psi (bar)	30 (2.07)	30 (2.07)	35 (2.41)	40 (2.76)	40 (2.76)	45 (3.10)	50 (3.45)				
150V5	Heavy Duty	por (bur)	35 (2.41)	40 (2.76)	45 (3.10)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	100 (6.89)	150,000 (10341.97)	0.12 (3.05)	0.06

Pnoumatic Valvo Actuators - Air Operator Sizing Data

Air-to-Open

Series 10V Valves

Valve Series	Operator Duty					Sys	tem Pre	ssure K	SI (Mp	a)		Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-6 (6.89-41.37)	8 (110.31)	10 (124.10)	12 (82.74)	14 (96.53)	15 (103.42)					
		Air Pressure: psi (bar)	60 (4.13)	60 (4.13)									
	Light Duty	Spring Pre-Compression: in. (mm)	0.31 (7.87)	0.38 (9.65)								8,200 (565.36)	0.12 to
40110		Stem Travel in (mm)	0.12 (3.05)	0.06 (1.52)								1	0.09***
10V2		Air Pressure: psi (bar)	40 (2.76)	40 (2.76)	40 (2.76)	40 (2.76)	40 (2.76)	45 (3.10)				15,000 (1034.20)	0.12
	Medium Duty	Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.16 (4.06)					
		Stem Travel in (mm)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)					
		Air Pressure: psi (bar)	60 (4.13)										
10V4 10V6	Light Duty	Spring Pre-Compression: in. (mm)	0.38 (9.65)									5,600 (386.46)	0.02 to
		Stem Travel in (mm)	0.06 (1.52)										0.17***
		Air Pressure: psi (bar)	45 (3.10)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.14)	65 (4.48)					
10V4	Medium Duty	Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.12 (3.05)	0.14 (3.65)	0.18 (4.75)	0.20 (5.08)	0.22 (5.59)				15,000 (1034.20)	0.20
		Stem Travel in (mm)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)					
		Air Pressure: psi (bar)	45 (3.10)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)					
10V6	Medium Duty	Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.12 (3.05)	0.14 (3.56)	0.18 (4.57)	0.20 (5.08)	0.22 (5.57)				15,000 (1034.20)	0.20
		Stem Travel in (mm)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)					
		Air Pressure: psi (bar)	75 (5.17)	85 (5.86)	95 (6.55)								
	Medium Duty	Spring Pre-Compression: in. (mm)	0.25 (6.35)	0.30 (7.62)	0.38 (9.65)							10,000 (689.46)	0.86
10V8		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)								
1040		Air Pressure: psi (bar)	50 (3.45)	55 (3.79)	60 (4.13)								
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.14 (3.56)	0.20 (5.08)	0.24 (6.10)							10,000 (689.46)	0.86
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)								

^{**} C_V data is for 2-way straight valves. For angle pattern, add approximately 50% to the C_V valve.

CAUTION: While testing has shown O-rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring, FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

^{*}Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Series SW Valves

Valve Series	Operator Duty	ı				Syst	tem Pre	ssure K	SI (Mp	a)		Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-6 (6.89-41.37)	8 (55.16)	10 (68.95)	12 (82.74)	14 (96.53)	15 (103.41)					
		Air Pressure: psi (bar)	65 (4.48)	65 (4.48)	75 (5.17)	85 (5.52)	95 (6.55)	95 (6.55)					
SW4	Medium Duty	Spring Pre-Compression: in. (mm)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.36 (9.14)	0.38 (9.14)				15,000 (1034.20)	0.65
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	025 (6.35)	025 (6.35)	025 (6.35)					
		Air Pressure: psi (bar)	75 (5.17)	75 (5.17)	95 (6.55)	95 (6.55)	95 (6.55)	100 (6.89)					
SW6	Medium Duty	Spring Pre-Compression: in. (mm)	0.25 (6.35)	0.25 (6.35)	0.28 (7.11)	0.44 (11.17)	0.52 (13.21)	0.56 (14.22)				13,500 (930.77)	0.62 to 0.95
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)	0.10 (2.54)	0.06 (1.53)					0.50
		Air Pressure: psi (bar)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	70 (4.83)	75 (5.17)					
SW6	Heavy Duty	Spring Pre-Compression: in. (mm)	0.14 (3.56)	0.19 (4.83)	0.24 (6.10)	0.28 (7.11)	0.34 (8.64)	0.36 (9.14)				15,000 (1034.20)	0.95
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)					
		Air Pressure: psi (bar)	95 (6.55)	95 (6.55)									
SW8	Medium Duty	Spring Pre-Compression: in. (mm)	0.38 (9.65)	0.56 (14.22)								7,200 (469.41)	1.75
		Stem Travel in (mm)	0.25 (6.35)	0.05 (1.53)									
		Air Pressure: psi (bar)	65 (4.48)	75 (5.17)	75 (5.17)								
SW8	Heavy Duty	Spring Pre-Compression: in. (mm)	0.28 (7.11)	0.38 (9.65)	0.44 (11.18)							10,000 (689.46)	1.14
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)								

Series MVE/MV Valves

Valve Series	Operator Duty	1				Sys	tem Pre	ssure K	SI (Mp	a)		Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-6 (6.89-41.37)	8 (55.15)	10 (68.95)	12 (82.74)	14 (96.53)	15 (103.41)					
MVE1 MV1		Air Pressure: psi (bar)	60 (4.13)	65 (4.48)	75 (5.17)	85 (5.86)	90 (6.21)	100 (6.89)					
	Mini-Light Duty	Spring Pre-Compression: in. (mm)	0.073 (1.85)	0.094 (2.39)	0.125 (3.18)	0.147 (3.73)	0.172 (4.37)	0.188 (4.78)				15,000 (1034.20)	MVE1/MV1 (0.05)
MVE2 MV2	July	Stem Travel in (mm)	0.094 (2.39)	0.094 (2.39)	0.094 (2.39)	0.094 (2.39)	0.094 (2.39)	0.094 (2.39)					MVE2/MV2 (0.11)

^{**} C_V data is for 2-way straight valves. For angle pattern, add approximately 50% to the C_V valve.

CAUTION: While testing has shown O-rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring, FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

^{*}Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Air-to-Open - Series 10SM Valves

Valve Series	Operator Duty	1				Syst	em Pre	ssure K	SI (Mp	a)			Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-4 (6.89-27.58)	6 (41.37)	8 (55.15)	10 (68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)			
		Air Pressure: psi (bar)	95 (6.55)	95 (6.55)	95 (6.55)									
	Medium Duty	Spring Pre-Compression: in. (mm)	0.38 (9.65)	0.44 (11.18)	0.56 (14.22)								7,900 (544.68)	1.74 to 0.72***
		Stem Travel in (mm)	0.25 (6.35)	0.19 (4.83)	0.06 (1.52)									
		Air Pressure: psi (bar)	55 (3.79)	65 (4.48)	70 (4.83)	75 (5.17)								
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.22 (5.59)	0.28 (7.11)	0.34 (8.64)	0.44 (11.18)							10,000 (689.46)	1.74 to 0.72***
400110		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)								
10SM9	Extra	Air Pressure: psi (bar)	45 (3.10)	45 (3.10)	55 (3.79)	60 (4.13)								
	Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.31 (7.87)	0.34 (8.64)	0.47 (11.94)	0.59 (14.99)							10,000 (689.46)	1.75
		Stem Travel in (mm)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)								
	Extra	Air Pressure: psi (bar)	25 (1.72)	30 (2.07)	35 (2.41)	40 (2.76)								
	Heavy Duty Two Stage	Spring Pre-Compression: in. (mm)	0.16 (4.06)	0.19 (4.83)	0.25 (6.35)	0.28 (7.11)							10,000 (689.46)	1.75
		Stem Travel in (mm)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)								
	Extra	Air Pressure: psi (bar)	55 (3.79)	65 (4.48)	80 (5.52)	95 (6.55)								
	Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.44 (11.18)	0.63 (16.00)	0.84 (21.34)	1.06 (26.92)							10,000 (689.46)	2.80
10SM12		Stem Travel in (mm)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)								
	Extra	Air Pressure: psi (bar)	40 (2.76)	50 (3.45)	55 (3.79)	60 (4.13)								
	Heavy Duty Two Stage	Spring Pre-Compression: in. (mm)	0.22 (5.59)	0.31 (7.87)	0.44 (11.18)	0.53 (13.46)							10,000 (689.46)	2.80
		Stem Travel in (mm)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)								
	Extra	Air Pressure: psi (bar)	75 (5.17)	100 (6.89)									0.500	5.00
	Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.69 (17.53)	1.13 (28.70)									6,500 (448.15)	5.20
10SM16		Stem Travel in (mm)	0.50 (12.70)	0.50 (12.70)										
	Extra	Air Pressure: psi (bar)	55 (3.79)	65 (4.48)	75 (5.17)	85 (5.86)							10.000	F.00
	Heavy Duty Two Stage	Spring Pre-Compression: in. (mm)	0.34 (8.64)	0.53 (13.46)	0.69 (17.53)	0.88 (22.35)							10,000 (689.46)	5.20
		Stem Travel in (mm)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)								

Air-to-Open - Series 20SM Valves

Valve Series	Operator Duty					Sys	tem Pre	ssure l	(SI (Mp	a)			Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-4 (6.89-27.58)	6 (41.37)	8 (55.15)	10 (68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)			
	Medium Duty	Air Pressure: psi (bar)	65 (4.48)	65 (4.48)	65 (4.48)	75 (5.17)	85 (5.86)	95 (6.55)	95 (6.55)	95 (6.55)	95 (6.55)			
20SM4		Spring Pre-Compression: in. (mm)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.44 (11.18)	0.50 (12.70)	0.56 (14.22)			
15P4†		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)	0.12 (3.05)	0.06 (1.52)		20,000 (1378.93)	0.31 to 0.22***
	Heavy Duty	Air Pressure: psi (bar)	35 (2.41)	35 (2.41)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	50 (3.45)	50 (3.45)			
	Medium Duty	Air Pressure: psi (bar)	65 (4.48)	65 (4.48)	75 (5.17)	85 (5.86)	95 (6.55)	95 (6.55)	95 (6.55)	95 (6.55)				
20SM6		Spring Pre-Compression: in. (mm)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.44 (11.18)	0.50 (12.70)	0.56 (14.22)				
15P6†		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)	0.12 (3.05)	0.06 (1.52)			18,250 (1258.27)	0.75 to 0.57**
	Heavy Duty	Air Pressure: psi (bar)	35 (2.41)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	50 (3.45)	50 (3.45)				
		Air Pressure: psi (bar)	85 (5.86)	90 (6.21)	95 (6.55)	95 (6.55)								
	Medium Duty	Spring Pre-Compression: in. (mm)	0.31 (7.87)	0.34 (8.64)	0.47 (11.94)	0.56 (14.22)							9,800 (675.68)	1.29 to 0.53**
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.15 (3.81)	0.06 (1.52)								
		Air Pressure: psi (bar)	50 (3.45)	55 (3.79)	65 (4.48)	70 (4.83)	75 (5.17)	75 (5.17)	75 (5.17)					
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.19 (4.83)	0.22 (5.59)	0.28 (7.11)	0.34 (8.64)	0.44 (11.18)	0.50 (12.70)	0.56 (14.22)				15,700 (1082.46)	1.29 to 0.53***
20SM9 15P8†		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)	0.12 (3.05)	0.06 (1.52)	75	0.5			
IJF0	Extra	Air Pressure: psi (bar)	40 (2.76)	40 (2.76)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	70 (4.83)	75 (5.17)	85 (5.86)		00.000	1.00
	Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.25 (6.35)	0.28 (7.11)	0.38 (9.65)	0.47 (11.94)	0.56 (14.22)	0.66 (16.76)	0.75 (19.05)	0.84 (21.34)	0.94 (23.88)		20,000 (1378.93)	1.30
		Stem Travel in (mm)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)	0.38 (9.65)			
	Extra	Air Pressure: psi (bar)	30 (2.07)	35 (2.41) 0.16	35 (2.41)	40 (2.72) 0.25	40 (2.72)	45 (3.10) 0.34	50 (3.45) 0.38	50 (3.45)	55 (3.79)		20,000	1 20
		Spring Pre-Compression: in. (mm)	0.13 (3.30) 0.38	(4.06)	0.19 (4.83)	0.25 (6.35)	0.28 (7.11) 0.38	0.34 (8.64)	(9.65)	0.44 (11.18) 0.38	(11.94)		20,000 (1378.93)	1.30
		Stem Travel in (mm)	(9.65)	0.38 (9.65)	0.38 (9.65)	(9.65)	(9.65)	(9.65)	0.38 (9.65)	(9.65)	0.38 (9.65)			

[†] Maximum rating is based on the valve rating.

^{***} C_V varies because of spring compression limitations. The flow coefficient range is given for the maximum stem travel (lowest system pressure) to minimum travel (highest system pressure).

Air-to-Open - Series 20SM Valves

Valve Series	Operator Duty	,				Syst	tem Pre	ssure l	(SI (Mp	a)			Maximum Pressure psi (bar)*	Flow Coefficient Cv**	
			1-4 (6.89-27.58)	6 (41.37)	8 (55.15)	10 (68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)				
		Air Pressure: psi (bar)	65 (4.48)	75 (5.17)											
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.28 (7.11)	0.38 (9.65)									6,000 (413.68)	0.80 to 0.78***	
		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)											
		Air Pressure: psi (bar)	50 (3.45)	60 (4.13)	70 (4.83)	80 (5.52)	90 (6.21)	100 (6.89)	100 (6.89)						
20SM12 10P12 [†]	Extra Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.38 (9.65)	0.50 (12.70)	0.66 (16.76)	0.81 (20.57)	0.97 (24.64)	1.13 (28.70)	1.22 (30.99)				15,000 (1034.19)	2.50	
	omgre otage	Stem Travel in (mm)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)				
		Air Pressure: psi (bar)	40 (2.76)	45 (3.10)	50 (3.45)	55 (3.79)	60 (4.13)	65 (4.48)	70 (4.83)	75 (5.17)	80 (5.52)				
	Extra Heavy Duty Two Stage	Spring Pre-Compression: in. (mm)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.41 (10.41)	0.50 (12.70)	0.56 (14.22)	0.66 (16.76)	0.72 (18.29)	0.81 (20.57)		20,000 (1378.93)	2.50	
	1 WO Olugo	Stem Travel in (mm)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)	0.44 (11.18)				
		Air Pressure: psi (bar)	75 (5.17)												
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.38 (9.65)										4,000 (275.79)	2.73 to .15***	
		Stem Travel in (mm)	0.25 (6.35)												
		Air Pressure: psi (bar)	65 (4.48)	80 (5.52)	95 (6.55)	100 (6.89)									
20SM16 10P16†	Extra Heavy Duty Single Stage	Spring Pre-Compression: in. (mm)	0.50 (12.70)	0.75 (19.05)	0.97 (24.64)	1.22 (30.99)							10,000 (689.46)	3.40	
	omgic otage	Stem Travel in (mm)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)									
	Futus	Air Pressure: psi (bar)	50 (3.45)	55 (3.79)	65 (4.48)	70 (4.83)	80 (5.52)	85 (5.86)	90 (6.21)	100 (6.89)	100 (6.89)				
	Heavy Duty	Spring Pre-Compression: in. (mm)	0.25 (6.35)	0.38 (9.65)	0.50 (12.70)	0.63 (16.00)	0.75 (19.05)	0.84 (21.34)	0.97 (24.64)	1.09 (27.69)	1.22 (30.99)		20,000 (1378.93)	3.40	
			Stem Travel in (mm)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)			

[†] Maximum rating is based on the valve rating.

CAUTION: While testing has shown O-rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring, FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

^{**} C_V data is for 2-way straight valves. For angle pattern, add approximately 50% to the C_V valve.

^{***} C_V varies because of spring compression limitations. The flow coefficient range is given for the maximum stem travel (lowest system pressure) to minimum travel (highest system pressure).

^{*}Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

Air-to-Open - Series 30SC Valves

Valve Series	Operator Duty					Sys	tem Pre	essure k	SI (Mp	a)			Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-15 (6.89-103.42)	16 (110.31)	18 (124.10)	20 (137.89)	22 (151.68)	24 (165.47)	26 (179.26)	28 (193.05)	30 (206.84)			
		Air Pressure: psi (bar)	70 (4.83)	75 (5.17)	75 (5.17)	80 (5.52)	85 (5.86)	95 (6.55)	100 (6.89)	100 (6.89)	100 (6.89)			
30SC16	Extra Heavy Duty Two Stage	Spring Pre-Compression: in. (mm)	0.56 (14.22)	0.62 (15.75)	0.68 (17.27)	0.75 (19.05)	0.88 (22.35)	0.94 (23.88)	1.00 (25.40)	1.06 (26.92)	1.38 (35.05)		30,000 (2068.39)	2.61
	Jingo	Stem Travel in (mm)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)	0.50 (12.70)			

Series 30VM Valves

Valve Series	Operator Duty	1				Sys	tem Pre	ssure K	SI (Mp	a)				Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-10 (6.89-68.95)	12 (82.74)	14 (96.53)	16 (110.31)	18 (124.10)	20 (137.89)	22 (151.68)	24 (165.47)	26 (179.26)	28 (193.05)	30 (206.84)		
	Medium Duty	Air Pressure: psi (bar)	45 (3.10)	45 (3.10)	55 (3.79)	55 (3.79)	55 (3.79)	55 (3.79)	65 (4.48)	65 (4.48)	65 (4.48)	65 (4.48)	75 (5.17)		
30VM4		Spring Pre-Compression: in. (mm)	0.12 (3.15)	0.12 (3.05)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.31 (7.87)	30,000 (2068.39)	0.12
0011114		Stem Travel in (mm)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)		
	Heavy Duty	Air Pressure: psi (bar)	25 (1.72)	25 (1.72)	30 (2.07)	30 (2.07)	30 (2.07)	30 (2.07)	35 (2.41)	35 (2.41)	35 (2.41)	35 (2.41)	40 (2.76)		
	Medium Duty	Air Pressure: psi (bar)	45 (3.10)	55 (3.79)	55 (3.79)	65 (4.48)	65 (4.48)	75 (5.17)	75 (5.17)	75 (5.17)	85 (5.86)	85 (5.86)	95 (6.55)		
30VM6 &		Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.25 (6.35)	0.31 (7.87)	0.31 (7.87)	0.31 (7.87)	0.38 (9.65)	0.38 (9.65)	0.44 (11.18)	30,000 (2068.39)	0.33 (30VM6)
30VM9		Stem Travel in (mm)	0.19 (4.13)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)		0.33 (30VM9)
	Heavy Duty	Air Pressure: psi (bar)	25 (1.72)	30 (2.07)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)	40 (2.76)	40 (2.76)	45 (3.10)	45 (3.10)	50 (3.45)		

Series 40VM Valves

Valve Series	Operator Duty	I				Sys	tem Pre	ssure K	SI (Mp	a)		Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-10 (6.89-68.95)	15 (103.42)	20 (137.89)	25 (172.37)	30 (206.84)	35 (241.31)	40 (275.79)				
	Medium Duty	Air Pressure: psi (bar)	60 (4.13)	70 (4.83)	75 (5.17)	85 (5.86)	95 (6.55)	100 (6.89)	100 (6.89)				
40VM9		Spring Pre-Compression: in (mm)	0.12 (3.05)	0.18 (4.57)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.43 (10.92)	0.5 (12.70)			40,000 (2757.86)	0.28
4001113		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)				
	Heavy Duty	Air Pressure: psi (bar)	30 (2.07)	35 (2.41)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	55 (3.79)				

Air-to-Open - Series 60VM Valves

Valve Series	Operator Duty					Sys	tem Pre	ssure K	SI (Mp	a)			Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-15 (6.89-103.42)	20 (137.89)	25 (172.37)	30 (206.84)	35 (241.31)	40 (275.79)	45 (310.26)	50 (344.73)	55 (379.21)	60 (413.68)		
	Medium Duty	Air Pressure: psi (bar)	55 (3.79)	65 (4.48)	65 (4.48)	65 (4.48)	75 (5.17)	75 (5.17)	85 (5.86)	85 (5.86)	85 (5.86)	95 (6.55)		
60VM4 &		Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.19 (4.83)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.25 (6.35)	0.31 (7.87)	0.31 (7.87)	0.31 (7.87)	0.38 (9.65)	60,000 (4136.79)	0.08 (60VM4)
60VM6		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)		
	Heavy Duty	Air Pressure: psi (bar)	30 (2.07)	35 (2.41)	35 (2.41)	35 (2.41)	40 (2.76)	40 (2.76)	45 (3.10)	45 (3.10)	45 (3.10)	50 (3.45)		0.09 (60VM6)
	Medium Duty	Air Pressure: psi (bar)	55 (3.74)	65 (4.42)	65 (4.42)	75 (5.10)	75 (5.10)	85 (5.78)	95 (6.46)	95 (6.46)	95 (6.46)	95 (6.46)		
60VM9		Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.19 (4.83)	0.19 (4.83)	0.25 (6.35)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.38 (9.65)	0.44 (11.18)	0.50 (12.70)	60,000 (4136.79)	0.14
3370		Stem Travel in (mm)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.25 (6.35)	0.19 (4.83)	0.12 (3.05)		
	Heavy Duty	Air Pressure: psi (bar)	30 (2.07)	35 (2.41)	35 (2.41)	40 (2.76)	40 (2.76)	45 (3.10)	50 (3.45)	50 (3.45)	50 (3.45)	50 (3.45)		

Series 100VM and 150V Valves

Valve Series	Operator Duty	1				Syst	tem Pre	ssure K	SI (Mp	a)		Maximum Pressure psi (bar)*	Flow Coefficient Cv**
			1-20 (6.89-137.89)	40 (275.79)	60 (13.68)	80 (551.57)	90 (620.52)	100 (689.46)	125 (861.83)	150 (1034.20)			
		Air Pressure: psi (bar)	35 (2.41)	40 (2.76)	50 (3.45)	60 (4.14)	70 (4.83)	70 (4.83)					
100VM4 100VM5 100VM6	Heavy Duty	Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.38 (9.65)				100,000 (6894.65)	0.09 to
100010		Stem Travel in (mm)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)					0.07***
		Air Pressure: psi (bar)	30 (2.07)	40 (2.76)	45 (3.10)	55 (3.79)	60 (4.13)	60 (4.13)	70 (4.83)	75 (5.17)			
150V5	Heavy Duty	Spring Pre-Compression: in. (mm)	0.12 (3.05)	0.19 (4.83)	0.25 (6.35)	0.31 (7.87)	0.38 (9.65)	0.38 (9.65)	0.44 (11.18)	0.56 (14.22)		150,000 (10341.97)	0.06
		Stem Travel in (mm)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.12 (3.05)	0.06 (1.52)			

^{**} C_V data is for 2-way straight valves. For angle pattern, add approximately 50% to the C_V valve.

CAUTION: While testing has shown O-rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring, FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

All dimensions for reference only and subject to change.

^{***} C_V varies because of spring compression limitations. The flow coefficient range is given for the maximum stem travel (lowest system pressure) to minimum travel (highest system pressure).

^{*}Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-0121SE

January2013

Autoclave Engineers

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified

Electric Flow Control Valve

Electric Flow Control Valve

Pressures to 60,000 psi (4137 bar)

The need to remotely control process flow at high pressure makes this valve a vital component to processing operations. Parker Autoclave Engineers now has a flow control valve available in several models. Parker Autoclave Engineers' control valve utilizes our standard Micro-metering valve coupled to an electric actuator. The combination of these two precision, high quality components, provide a superior low flow control valve for use with liquids and gases.

Electric Flow Control Valve Features:

- Sizes 1/8", 1/4" and 3/8"
- C_V: 0.004
- Precise, accurate control
- Temperatures: -100°F to +600°F
- End connections: low pressure and high pressure Autoclave
- Materials: 316 SS, special materials available
- Controller Enclosure Rating: IP65 Weatherproof

www.autoclave.com

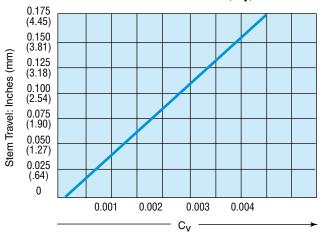
Pressures to 60,000 psi (4137 bar)

	Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _V	Pressure Rating psi (bar) @ Room Temperature**
10VRMM	1/8	W125	0.062 (1.57)	0.004	15,000 (1034)
30VRMM	1/4	F250C	0.062 (1.57)	0.004	30,000 (2069)
60VRMM	1/4	F250C	0.062 (1.57)	0.004	60,000 (4137)
60VRMM	3/8	F375C	0.062 (1.57)	0.004	60,000 (4137)

Note:

Controller Specifications

The microprocessor controlled motor guarantees optimum voltage, current and torque control when starting, running or stopping valve rotation. The microprocessor also assures accurate stem location and repeatability.


Power Requirement: 24VDC/50 Watts Min. Control Input: 4-20 mA or 0-10 VDC

Operating Temperature: -22°F (-30°C) to 185°F (85°C)

2 foot lead cable

Anodized Aluminum Housing, IP65 (NEMA 4X) Weatherproof

Flow Coefficient (C_V) 0.175 (4.45)

Note: 1 turn is equal to 0.025" (0.64mm)

Ordering Information

Model	Control Input	No. Rotations	Controller RPMs	Fig.
10VRMM2812-C4	4 - 20 mA	6	10	1
10VRMM2812-C10	0 - 10 VDC	6	10	1
30VRMM4812-C4	4 - 20 mA	6	10	2
30VRMM4812-C10	0 - 10 VDC	6	10	2
60VRMM4812-C4	4 - 20 mA	6	10	2
60VRMM4812-C10	0 - 10 VDC	6	10	2
60VRMM6812-C4	4 - 20 mA	6	10	2
60VRMM6812-C10	0 - 10 VDC	6	10	2

Note: For micrometering valve details see needle valve section.

^{**} For complete temperature ratings see pressure/temperature rating guide in Technical Information section

Valve Options

Extreme Temperatures

Standard Parker Autoclave Engineers valves with PTFE packing may be operated to 450°F (232°C). Optional packing or trim material available by adding the following suffixes to catalog order number.[†]

TG - standard valve with PTFE glass packing to 600°F (316°C).

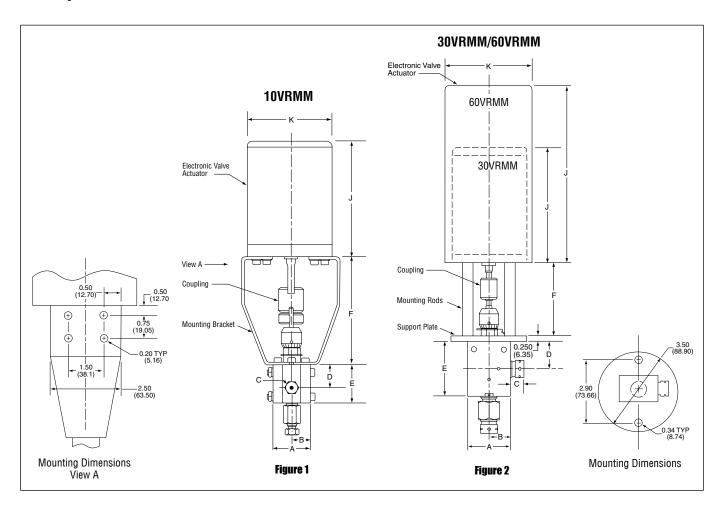
B - standard valve with cryogenic trim material and PTFE packing to -100°F (-73°C).

See Needle Valve options for stem and seat coatings for erosive service. **Metering valve not to be used as a shutoff valve.**

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R60VRMM4882-C**)


Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found on the valve drawing or contact your Sales Representative for information.

Consult your Parker Autoclave Engineers representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Outside	ter Orifice					Dime	ensions -	inches ((mm)		Block Thick-	Valve
Number	Tube	Diameter	A	В	С	D	E	F	G	J	K	ness	Pattern
10VRMM2812-C4	1/8	0.062	1.50	0.88	0.31	0.94	1.56	4.50	2.50	4.75	3.50	0.75	See
10VRMM2812-C10	(3.17)	(1.57)	(38.10)	(22.35)	(7.87)	(23.87)	(39.62)	(114.30)	(63.50)	(120.65)	(88.90)	(19.05)	Figure 1
30VRMM4812-C4	1/4	0.062	2.00	1.00	*0.50	1.12	2.00	3.50	3.50	4.75	3.50	1.00	
30VRMM4812-C10	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(28.44)	(50.80)	(88.90)	(88.90)	(120.65)	(88.90)	(25.40)	_
60VRMM4812-C4	1/4	0.062	2.00	1.00	0.50	1.31	2.63	3.50	3.50	8.30	4.10	1.00	See
60VRMM4812-C10	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(66.80)	(88.90)	(88.90)	(210.80)	(104.14)	(25.40)	Figure 2
60VRMM6812-C4	3/8	0.062	2.00	1.00	0.53	1.31	2.63	3.50	3.50	8.30	4.10	1.00	
60VRMM6812-C10	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.80)	(88.90)	(88.90)	(210.80)	(104.14)	(25.40)	

^{*}Distance gland extends

[†]Parker Autoclave Engineers does not recommend compression sleeve connections below 0°F (-17.8°C) or above 650°F (343°C). For additional valve options, contact your Sales Representative.

WARNING

FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, asfety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

© 2013 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

02-9228BE

January2013

Instrumentation Products Division
Autoclave Engineers Operation
8325 Hessinger Drive
Erie, Pennsylvania 16509-4679 USA
PH: 814-860-5700 FAX: 814-860-5811
www.autoclave.com

Parker Hannifin Manufacturing Ltd.
Instrumentation Products Division, Europe
Industrial Estate Whitemill
Wexford, Republic of Ireland
PH: 353 53 914 1566
FAX: 353 53 914 1582

Caution! Do not mix or interchange parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Caution! Parker Autoclave Engineers Valves, Fittings and Tools are not designed to work with common commercial instrument tubing and will only work with tubing built to Parker Autoclave Engineers AES Specifications. Failure to do so will void warranty.

ISO-9001 Certified